Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators

被引:0
|
作者
Shan Gao
Donghua Shi
Dmitry V. Zenkov
机构
[1] Beijing Institute of Technology,Beijing Key Laboratory on MCAACI, School of Mathematics and Statistics
[2] North Carolina State University,Department of Mathematics
来源
关键词
Exact integrators; Hamel’s equations; Nonholonomic systems; Momentum; Symmetry; 70F25; 37J60; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
Exact variational integrators were exposed in the context of Lagrangian mechanics in Marsden and West (2001). These integrators sample the trajectories of holonomic mechanical systems and are useful for developing practical mechanical integrators. This paper introduces an exact variational integrator for Hamel’s equations, which are interpreted as a noncanonical form of Hamilton’s equations. This exact Hamel integrator is then adopted for a systematic construction of low-order constraint-preserving integrators for nonholonomic mechanical systems.
引用
收藏
相关论文
共 50 条
  • [41] Geometry and Hamiltonian mechanics on discrete spaces
    Talasila, V
    Clemente-Gallardo, J
    van der Schaft, AJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (41): : 9705 - 9734
  • [42] Geometric formulations and variational integrators of discrete autonomous Birkhoff systems
    刘世兴
    刘畅
    郭永新
    ChinesePhysicsB, 2011, 20 (03) : 288 - 292
  • [43] Geometric formulations and variational integrators of discrete autonomous Birkhoff systems
    Liu Shi-Xing
    Liu Chang
    Guo Yong-Xin
    CHINESE PHYSICS B, 2011, 20 (03)
  • [44] Symmetries and variational calculation of discrete Hamiltonian systems
    Xia Li-Li
    Chen Li-Qun
    Fu Jing-Li
    Wu Jing-He
    CHINESE PHYSICS B, 2014, 23 (07)
  • [45] Symmetries and variational calculation of discrete Hamiltonian systems
    夏丽莉
    陈立群
    傅景礼
    吴旌贺
    Chinese Physics B, 2014, (07) : 196 - 202
  • [46] Discrete-Time Model of an IPMSM Based on Variational Integrators
    Specht, Andreas
    Ober-Bloebaum, Sina
    Wallscheid, Oliver
    Romaus, Christoph
    Boecker, Joachim
    2013 IEEE INTERNATIONAL ELECTRIC MACHINES & DRIVES CONFERENCE (IEMDC), 2013, : 1411 - 1417
  • [47] Lie group variational integrators for the full body problem in orbital mechanics
    Taeyoung Lee
    Melvin Leok
    N. Harris McClamroch
    Celestial Mechanics and Dynamical Astronomy, 2007, 98 : 121 - 144
  • [48] Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids
    Marrero, Juan C.
    de Diego, David Martin
    Martinez, Eduardo
    NONLINEARITY, 2006, 19 (06) : 1313 - 1348
  • [49] Lie group variational integrators for the full body problem in orbital mechanics
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 98 (02): : 121 - 144
  • [50] Variational integrators for Maxwell's equations with sources
    Stern, A.
    Tong, Y.
    Desbrun, M.
    Marsden, J. E.
    PIERS 2008 CAMBRIDGE, PROCEEDINGS, 2008, : 443 - 447