Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators

被引:0
|
作者
Shan Gao
Donghua Shi
Dmitry V. Zenkov
机构
[1] Beijing Institute of Technology,Beijing Key Laboratory on MCAACI, School of Mathematics and Statistics
[2] North Carolina State University,Department of Mathematics
来源
关键词
Exact integrators; Hamel’s equations; Nonholonomic systems; Momentum; Symmetry; 70F25; 37J60; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
Exact variational integrators were exposed in the context of Lagrangian mechanics in Marsden and West (2001). These integrators sample the trajectories of holonomic mechanical systems and are useful for developing practical mechanical integrators. This paper introduces an exact variational integrator for Hamel’s equations, which are interpreted as a noncanonical form of Hamilton’s equations. This exact Hamel integrator is then adopted for a systematic construction of low-order constraint-preserving integrators for nonholonomic mechanical systems.
引用
收藏
相关论文
共 50 条
  • [31] DISCRETE HAMILTONIAN-MECHANICS
    LABUDDE, RA
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 1980, 6 (01) : 3 - 12
  • [32] An invariant variational principle for Hamiltonian mechanics
    Golovnev, Alexey V.
    Ushakov, Alexander S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (23)
  • [33] MULTISYMPLECTIC VARIATIONAL INTEGRATORS FOR NONSMOOTH LAGRANGIAN CONTINUUM MECHANICS
    Demoures, Francois
    Gay-Balmaz, Francois
    Ratiu, Tudor S.
    FORUM OF MATHEMATICS SIGMA, 2016, 4 : 1 - 54
  • [34] Lagrangian mechanics and variational integrators on two-spheres
    Lee, Taeyoung
    Leok, Melvin
    McClamroch, N. Harris
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (09) : 1147 - 1174
  • [35] New way to construct high order Hamiltonian variational integrators
    Fu, Minghui
    Lu, Kelang
    Li, Weihua
    Sheshenin, S. V.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (08) : 1041 - 1052
  • [36] New way to construct high order Hamiltonian variational integrators
    Minghui FU
    Kelang LU
    Weihua LI
    S.V.SHESHENIN
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (08) : 1041 - 1052
  • [37] ADAPTIVE HAMILTONIAN VARIATIONAL INTEGRATORS AND APPLICATIONS TO SYMPLECTIC ACCELERATED OPTIMIZATION
    Duruisseaux, Valentin
    Schmitt, Jeremy
    Leok, Melvin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04): : A2949 - A2980
  • [38] New way to construct high order Hamiltonian variational integrators
    Minghui Fu
    Kelang Lu
    Weihua Li
    S. V. Sheshenin
    Applied Mathematics and Mechanics, 2016, 37 : 1041 - 1052
  • [39] Noether Theorems and Discrete Variational Integrators in Field Theory
    Xia, Li-Li
    Chen, Li-Qun
    Liu, Chang-Xin
    ACTA PHYSICA POLONICA A, 2015, 127 (03) : 669 - 673
  • [40] Mechanical integrators derived from a discrete variational principle
    Wendlandt, JM
    Marsden, JE
    PHYSICA D-NONLINEAR PHENOMENA, 1997, 106 (3-4) : 223 - 246