Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators

被引:0
|
作者
Shan Gao
Donghua Shi
Dmitry V. Zenkov
机构
[1] Beijing Institute of Technology,Beijing Key Laboratory on MCAACI, School of Mathematics and Statistics
[2] North Carolina State University,Department of Mathematics
来源
关键词
Exact integrators; Hamel’s equations; Nonholonomic systems; Momentum; Symmetry; 70F25; 37J60; 70H33;
D O I
暂无
中图分类号
学科分类号
摘要
Exact variational integrators were exposed in the context of Lagrangian mechanics in Marsden and West (2001). These integrators sample the trajectories of holonomic mechanical systems and are useful for developing practical mechanical integrators. This paper introduces an exact variational integrator for Hamel’s equations, which are interpreted as a noncanonical form of Hamilton’s equations. This exact Hamel integrator is then adopted for a systematic construction of low-order constraint-preserving integrators for nonholonomic mechanical systems.
引用
收藏
相关论文
共 50 条
  • [21] On the Γ-convergence of discrete dynamics and variational integrators
    Müller S.
    Ortiz M.
    Journal of Nonlinear Science, 2004, 14 (3) : 279 - 296
  • [22] VARIATIONAL INTEGRATORS FOR DISCRETE LAGRANGE PROBLEMS
    Garcia, Pedro L.
    Fernandez, Antonio
    Rodrigo, Cesar
    JOURNAL OF GEOMETRIC MECHANICS, 2010, 2 (04): : 343 - 374
  • [23] On the Γ-convergence of discrete dynamics and variational integrators
    Müller, S
    Ortiz, M
    JOURNAL OF NONLINEAR SCIENCE, 2004, 14 (03) : 279 - 296
  • [24] On the Γ-Convergence of Discrete Dynamics and Variational Integrators
    S. Müller
    M. Ortiz
    Journal of Nonlinear Science, 2004, 14 : 279 - 296
  • [25] Variational principle in Hamiltonian mechanics
    L. V. Prokhorov
    A. S. Ushakov
    Doklady Mathematics, 2008, 78 : 925 - 928
  • [26] Variational principle in Hamiltonian mechanics
    Prokhorov, L. V.
    Ushakov, A. S.
    DOKLADY MATHEMATICS, 2008, 78 (03) : 925 - 928
  • [27] Nonsmooth Lagrangian mechanics and variational collision integrators
    Fetecau, RC
    Marsden, JE
    Ortiz, M
    West, M
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2003, 2 (03): : 381 - 416
  • [28] Lie-Poisson integrators: A Hamiltonian, variational approach
    Ma, Zhanhua
    Rowley, Clarence W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 82 (13) : 1609 - 1644
  • [29] Discrete variational integrators and optimal control theory
    Manuel de León
    David Martín de Diego
    Aitor Santamaría-Merino
    Advances in Computational Mathematics, 2007, 26 : 251 - 268
  • [30] Discrete variational integrators and optimal control theory
    de Leon, Manuel
    Martin de Diego, David
    Santamaria-Merino, Aitor
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 251 - 268