Hamel's Formalism and Variational Integrators on a Sphere

被引:0
|
作者
Zenkov, Dmitry V. [1 ]
Leok, Melvin [1 ]
Bloch, Anthony M. [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
DISCRETE EULER-POINCARE; LAGRANGIAN MECHANICS; EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses Hamel's formalism and its applications to structure-preserving integration of mechanical systems. It utilizes redundant coordinates in order to eliminate multiple charts on the configuration space as well as nonphysical artificial singularities induced by local coordinates while keeping the minimal possible degree of redundancy and avoiding integration of differential-algebraic equations.
引用
收藏
页码:7504 / 7510
页数:7
相关论文
共 50 条
  • [1] Discrete Hamiltonian Variational Mechanics and Hamel’s Integrators
    Shan Gao
    Donghua Shi
    Dmitry V. Zenkov
    Journal of Nonlinear Science, 2023, 33
  • [2] Discrete Hamiltonian Variational Mechanics and Hamel's Integrators (vol 33, 26, 2023)
    Gao, Shan
    Shi, Donghua
    Zenkov, Dmitry V.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (02)
  • [3] Jacobi multipliers and Hamel's formalism
    Carinena, Jose F.
    Santos, Patricia
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (22)
  • [4] Hamel’s Formalism for Classical Field Theories
    Donghua Shi
    Dmitry V. Zenkov
    Anthony M. Bloch
    Journal of Nonlinear Science, 2020, 30 : 1307 - 1353
  • [5] Hamel's Formalism for Classical Field Theories
    Shi, Donghua
    Zenkov, Dmitry V.
    Bloch, Anthony M.
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) : 1307 - 1353
  • [6] Obstacle Avoidance for Formation Systems under Hamel's formalism
    Gu, Yingmin
    Liu, Huageng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 842 - 845
  • [7] Hamel's Formalism for Infinite-Dimensional Mechanical Systems
    Shi, Donghua
    Berchenko-Kogan, Yakov
    Zenkov, Dmitry V.
    Bloch, Anthony M.
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) : 241 - 283
  • [8] Hamel’s Formalism for Infinite-Dimensional Mechanical Systems
    Donghua Shi
    Yakov Berchenko-Kogan
    Dmitry V. Zenkov
    Anthony M. Bloch
    Journal of Nonlinear Science, 2017, 27 : 241 - 283
  • [9] Variational integrators for Maxwell's equations with sources
    Stern, A.
    Tong, Y.
    Desbrun, M.
    Marsden, J. E.
    PIERS 2008 CAMBRIDGE, PROCEEDINGS, 2008, : 443 - 447
  • [10] AN UNCONDITIONALLY STABLE DYNAMICAL INTEGRATION ALGORITHM BASED ON HAMEL’S FORMALISM
    Gu W.
    Liu C.
    An Z.
    Shi D.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (09): : 2577 - 2587