Hamel's Formalism and Variational Integrators on a Sphere

被引:0
|
作者
Zenkov, Dmitry V. [1 ]
Leok, Melvin [1 ]
Bloch, Anthony M. [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2012年
基金
美国国家科学基金会;
关键词
DISCRETE EULER-POINCARE; LAGRANGIAN MECHANICS; EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses Hamel's formalism and its applications to structure-preserving integration of mechanical systems. It utilizes redundant coordinates in order to eliminate multiple charts on the configuration space as well as nonphysical artificial singularities induced by local coordinates while keeping the minimal possible degree of redundancy and avoiding integration of differential-algebraic equations.
引用
收藏
页码:7504 / 7510
页数:7
相关论文
共 50 条
  • [21] Asynchronous variational integrators
    Lew, A
    Ortiz, M
    GEOMETRY, MECHANICS AND DYNAMICS: VOLUME IN HONOR OF THE 60TH BIRTHDAY OF J. E. MARSDEN, 2002, : 91 - 110
  • [22] Spectral variational integrators
    James Hall
    Melvin Leok
    Numerische Mathematik, 2015, 130 : 681 - 740
  • [23] Fractional variational integrators for fractional variational problems
    Wang, Dongling
    Xiao, Aiguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 602 - 610
  • [24] "SLIMPLECTIC" INTEGRATORS: VARIATIONAL INTEGRATORS FOR GENERAL NONCONSERVATIVE SYSTEMS
    Tsang, David
    Galley, Chad R.
    Stein, Leo C.
    Turner, Alec
    ASTROPHYSICAL JOURNAL LETTERS, 2015, 809 (01)
  • [25] COMPOSITION OF NUMERICAL INTEGRATORS IN THE HYFLOW FORMALISM
    Barros, Fernando J.
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 1238 - 1249
  • [26] Variational Integrators for Dissipative Systems
    Limebeer, David J. N.
    Ober-Blobaum, Sina
    Farshi, Farhang Haddad
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (04) : 1381 - 1396
  • [27] Properties of Hamiltonian variational integrators
    Schmitt, Jeremy M.
    Leok, Melvin
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (01) : 377 - 398
  • [28] Modified equations for variational integrators
    Vermeeren, Mats
    NUMERISCHE MATHEMATIK, 2017, 137 (04) : 1001 - 1037
  • [29] Discrete Hamiltonian variational integrators
    Leok, Melvin
    Zhang, Jingjing
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1497 - 1532
  • [30] Variational integrators for inertial magnetohydrodynamics
    Kraus, Michael
    PHYSICS OF PLASMAS, 2018, 25 (08)