Partitioning into Sets of Bounded Cardinality

被引:0
|
作者
Koivisto, Mikko [1 ]
机构
[1] Univ Helsinki, HIIT, Dept Comp Sci, FI-00014 Helsinki, Finland
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the partitions of an n-element set into A; members of a given set family can be counted in time O((2-epsilon)(n)), where epsilon > 0 depends only on the maximum size among the members of the family. Specifically, we give a simple combinatorial algorithm that counts the perfect matchings in a given graph on n vertices in time 0(poly(n)phi(n)), where phi = 1.618 ... is the golden ratio; this improves a previous bound based on fast matrix multiplication.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 50 条
  • [31] FINITE SETS WITH FAKE OBSERVABLE CARDINALITY
    Artigue, Alfonso
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (01) : 323 - 333
  • [32] Questions of cardinality of finite fuzzy sets
    Fuzzy Sets Syst, 2 (185-210):
  • [33] Maximum cardinality resonant sets and maximal alternating sets of hexagonal systems
    Klavzar, Sandi
    Salem, Khaled
    Taranenko, Andrej
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 506 - 513
  • [34] A NOTE ON THE CARDINALITY OF INFINITE PARTIALLY ORDERED SETS
    GINSBURG, J
    PACIFIC JOURNAL OF MATHEMATICS, 1983, 106 (02) : 265 - 270
  • [35] Cardinality bounds via covers by compact sets
    Bella, A.
    Carlson, N.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 101 - 112
  • [36] SYLLOGISTIC LOGIC WITH CARDINALITY COMPARISONS, ON INFINITE SETS
    Moss, Lawrence S.
    Topal, Selcuk
    REVIEW OF SYMBOLIC LOGIC, 2020, 13 (01): : 1 - 22
  • [37] The number of Bh-sets of a given cardinality
    Dellamonica, Domingos, Jr.
    Kohayakawa, Yoshiharu
    Lee, Sang June
    Rodl, Vojtech
    Samotij, Wojciech
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 : 629 - 669
  • [38] Cardinality bounds via covers by compact sets
    A. Bella
    N. Carlson
    Acta Mathematica Hungarica, 2021, 164 : 101 - 112
  • [39] CARDINALITY OF GENERATING SETS FOR IDEALS OF A COMMUTATIVE RING
    GILMER, R
    HEINZER, W
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (04) : 791 - 798
  • [40] CARDINALITY OF FUZZY-SETS VIA BAGS
    YAGER, RR
    MATHEMATICAL MODELLING, 1987, 9 (06): : 441 - 446