Maximum cardinality resonant sets and maximal alternating sets of hexagonal systems

被引:8
|
作者
Klavzar, Sandi [2 ,3 ]
Salem, Khaled [1 ]
Taranenko, Andrej [3 ]
机构
[1] British Univ Egypt, Dept Basic Sci, El Shorouk 11837, Egypt
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Nat Sci & Math, SLO-2000 Maribor, Slovenia
关键词
Hexagonal system; Perfect matching; Resonant set; Alternating set; Clar number; KEKULE STRUCTURES; BENZENOID HYDROCARBONS; PERFECT MATCHINGS; CLAR NUMBER; GRAPHS; CHAINS; ALGORITHM; FULLERENE; FUSENES; POLYHEX;
D O I
10.1016/j.camwa.2009.06.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the Clar number can be arbitrarily larger than the cardinality of a maximal alternating set. In particular, a maximal alternating set of a hexagonal system need not contain a maximum cardinality resonant set, thus disproving a previously stated conjecture. It is known that maximum cardinality resonant sets and maximal alternating sets are canonical, but the proofs of these two theorems are analogous and lengthy. A new conjecture is proposed and it is shown that the validity of the conjecture allows short proofs of the aforementioned two results. The conjecture holds for catacondensed hexagonal systems and for all normal hexagonal systems up to ten hexagons. Also, it is shown that the Fries number can be arbitrarily larger than the Clar number. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:506 / 513
页数:8
相关论文
共 50 条
  • [1] Clar Sets and Maximum Forcing Numbers of Hexagonal Systems
    Zhou, Xiangqian
    Zhang, Heping
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2015, 74 (01) : 161 - 174
  • [2] ON THE CARDINALITY OF SETS OF SEQUENCES WITH GIVEN MAXIMUM CORRELATION
    TIETAVAINEN, A
    DISCRETE MATHEMATICS, 1992, 106 : 471 - 477
  • [3] INDEPENDENT SETS OF CARDINALITY s OF MAXIMAL OUTERPLANAR GRAPHS
    Estes, John
    Staton, William
    Wei, Bing
    FIBONACCI QUARTERLY, 2013, 51 (02): : 147 - 150
  • [4] The cardinality of the collection of maximum independent sets of a functional graph
    Chang, SC
    Yeh, YN
    ADVANCES IN APPLIED MATHEMATICS, 1997, 18 (03) : 286 - 299
  • [5] Maximum cardinality neighbourly sets in quadrilateral free graphs
    K. S. Neethi
    Sanjeev Saxena
    Journal of Combinatorial Optimization, 2017, 33 : 422 - 444
  • [6] Maximum cardinality neighbourly sets in quadrilateral free graphs
    Neethi, K. S.
    Saxena, Sanjeev
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 422 - 444
  • [7] On the maximal cardinality of half-factorial sets in cyclic groups
    Plagne, A
    Schmid, WA
    MATHEMATISCHE ANNALEN, 2005, 333 (04) : 759 - 785
  • [8] On the maximal cardinality of half-factorial sets in cyclic groups
    Alain Plagne
    Wolfgang A. Schmid
    Mathematische Annalen, 2005, 333 : 759 - 785
  • [9] The ω-limit sets of alternating systems
    D'Aniello, Emma
    Steele, T. H.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (12) : 1793 - 1799
  • [10] CARDINALITY OF DENSE SETS
    MEYER, PR
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1972, 75 (03): : 210 - &