Cardinality bounds via covers by compact sets

被引:0
|
作者
A. Bella
N. Carlson
机构
[1] University of Catania,Department of Mathematics
[2] California Lutheran University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2021年 / 164卷
关键词
ardinality bound; cardinal invariant; countably tight space; homogeneous space; weak tightness; 54A25;
D O I
暂无
中图分类号
学科分类号
摘要
We establish results concerning covers of spaces by compact and related sets. Several cardinality bounds follow as corollaries. Introducing the cardinal invariant ψ¯c(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\psi}_c(X)$$\end{document}, we show that |X|≤πχ(X)c(X)ψ¯c(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq \pi\chi(X)^{c(X)\overline{\psi}_c(X)}$$\end{document} for any topological space X. If X is Hausdorff then ψ¯c(X)≤ψc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\psi}_c(X)\leq\psi_c(X)$$\end{document}; this gives a strengthening of a theorem of Shu-Hao [24]. We also prove that |X|≤2pwLc(X)t(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{pwL_c(X)t(X)pct(X)}$$\end{document} for a homogeneous Hausdorff space X. The invariant pwLc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pwL_c(X)$$\end{document}, introduced in [9], is bounded above by both L(X) and c(X). Our result thus improves the bound |X|≤2L(X)t(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{L(X)t(X)pct(X)}$$\end{document} for homogeneous Hausdorff spaces X [13] and represents a new extension of de la Vega's Theorem [15] into the Hausdorff setting. Moreover, we show pwL(X)≤aL(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pwL(X)\leq aL(X)$$\end{document}, demonstrating that 2pwL(X)χ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{pwL(X)\chi(X)}$$\end{document} is not a cardinality bound for all Hausdorff spaces. This answers a question of Bella and Spadaro [9]. A further theorem on covers by Gκc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^c_\kappa$$\end{document}-sets lead to cardinality bounds involving the linear Lindelöf degree lL(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$lL(X)$$\end{document}, a weakening of L(X). It was shown in [5] that |X|≤2lL(X)F(X)ψ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{lL(X)F(X)\psi(X)}$$\end{document} for Tychonoff spaces. We show the consistency of a) |X|≤2lL(X)F(X)ψc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{lL(X)F(X)\psi_c(X)}$$\end{document} if X is Hausdorff, and b) |X|≤2lL(X)F(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{lL(X)F(X)pct(X)}$$\end{document} if X is Hausdorff and homogeneous. If X is additionally regular, the former consistently improves the result from [5]. The latter gives a consistent improvement of the inequality |X|≤2L(X)t(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{L(X)t(X)pct(X)}$$\end{document} for homogeneous Hausdorff spaces.
引用
收藏
页码:101 / 112
页数:11
相关论文
共 50 条
  • [1] Cardinality bounds via covers by compact sets
    Bella, A.
    Carlson, N.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 101 - 112
  • [2] Polynomial constraints for sets with cardinality bounds
    Marnette, Bruno
    Kuncak, Viktor
    Rinard, Martin
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2007, 4423 : 258 - +
  • [3] CARDINALITY BOUNDS OF H-SETS IN URYSOHN SPACES
    McNeill, Daniel K.
    TOPOLOGY PROCEEDINGS, VOL 36, 2010, 36 : 123 - 129
  • [4] Bounds on Polarization Problems on Compact Sets via Mixed Integer Programming
    Rolfes, Jan
    Schueler, Robert
    Zimmermann, Marc Christian
    DISCRETE & COMPUTATIONAL GEOMETRY, 2025, 73 (02) : 550 - 568
  • [5] Lower bounds for the cardinality of minimal blocking sets in projective spaces
    Bokler, M
    DISCRETE MATHEMATICS, 2003, 270 (1-3) : 13 - 31
  • [6] CARDINALITY OF FUZZY-SETS VIA BAGS
    YAGER, RR
    MATHEMATICAL MODELLING, 1987, 9 (06): : 441 - 446
  • [7] Cardinality of the metric projection on typical compact sets in Hilbert spaces
    De Blasi, FS
    Zamfirescu, TI
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 126 : 37 - 44
  • [8] Compact Stein surfaces as branched covers with same branch sets
    Oba, Takahiro
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (03): : 1733 - 1751
  • [9] Bounds and constructions for the star-discrepancy via δ-covers
    Doerr, B
    Gnewuch, M
    Srivastav, A
    JOURNAL OF COMPLEXITY, 2005, 21 (05) : 691 - 709
  • [10] SPACES WHICH ADMIT CLOSURE-PRESERVING COVERS BY COMPACT SETS
    KATUTA, Y
    PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (10): : 826 - 828