Cardinality bounds via covers by compact sets

被引:0
|
作者
A. Bella
N. Carlson
机构
[1] University of Catania,Department of Mathematics
[2] California Lutheran University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2021年 / 164卷
关键词
ardinality bound; cardinal invariant; countably tight space; homogeneous space; weak tightness; 54A25;
D O I
暂无
中图分类号
学科分类号
摘要
We establish results concerning covers of spaces by compact and related sets. Several cardinality bounds follow as corollaries. Introducing the cardinal invariant ψ¯c(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\psi}_c(X)$$\end{document}, we show that |X|≤πχ(X)c(X)ψ¯c(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq \pi\chi(X)^{c(X)\overline{\psi}_c(X)}$$\end{document} for any topological space X. If X is Hausdorff then ψ¯c(X)≤ψc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\psi}_c(X)\leq\psi_c(X)$$\end{document}; this gives a strengthening of a theorem of Shu-Hao [24]. We also prove that |X|≤2pwLc(X)t(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{pwL_c(X)t(X)pct(X)}$$\end{document} for a homogeneous Hausdorff space X. The invariant pwLc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pwL_c(X)$$\end{document}, introduced in [9], is bounded above by both L(X) and c(X). Our result thus improves the bound |X|≤2L(X)t(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{L(X)t(X)pct(X)}$$\end{document} for homogeneous Hausdorff spaces X [13] and represents a new extension of de la Vega's Theorem [15] into the Hausdorff setting. Moreover, we show pwL(X)≤aL(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pwL(X)\leq aL(X)$$\end{document}, demonstrating that 2pwL(X)χ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{pwL(X)\chi(X)}$$\end{document} is not a cardinality bound for all Hausdorff spaces. This answers a question of Bella and Spadaro [9]. A further theorem on covers by Gκc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G^c_\kappa$$\end{document}-sets lead to cardinality bounds involving the linear Lindelöf degree lL(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$lL(X)$$\end{document}, a weakening of L(X). It was shown in [5] that |X|≤2lL(X)F(X)ψ(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{lL(X)F(X)\psi(X)}$$\end{document} for Tychonoff spaces. We show the consistency of a) |X|≤2lL(X)F(X)ψc(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{lL(X)F(X)\psi_c(X)}$$\end{document} if X is Hausdorff, and b) |X|≤2lL(X)F(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{lL(X)F(X)pct(X)}$$\end{document} if X is Hausdorff and homogeneous. If X is additionally regular, the former consistently improves the result from [5]. The latter gives a consistent improvement of the inequality |X|≤2L(X)t(X)pct(X)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|X|\leq 2^{L(X)t(X)pct(X)}$$\end{document} for homogeneous Hausdorff spaces.
引用
收藏
页码:101 / 112
页数:11
相关论文
共 50 条
  • [21] Fixed cardinality stable sets
    Samer, Phillippe
    Haugland, Dag
    DISCRETE APPLIED MATHEMATICS, 2021, 303 : 137 - 148
  • [22] Partitioning into Sets of Bounded Cardinality
    Koivisto, Mikko
    PARAMETERIZED AND EXACT COMPUTATION, 2009, 5917 : 258 - 263
  • [23] Cardinality and Entropy for Bifuzzy Sets
    Patrascu, Vasile
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND METHODS, PT 1, 2010, 80 : 656 - 665
  • [24] On cardinality and singular fuzzy sets
    Dyczkowski, Krzysztof
    Wygralak, Maciej
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 261 - 268
  • [25] DISCRETE SETS OF SINGULAR CARDINALITY
    FLEISSNER, WG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (04) : 743 - 745
  • [26] Sharp bounds for the anisotropic p-capacity of Euclidean compact sets
    Li, Ruixuan
    Xiong, Changwei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 317 : 196 - 224
  • [27] Lower bounds for the half-plane capacity of compact sets and symmetrization
    Dubinin, V. N.
    SBORNIK MATHEMATICS, 2010, 201 (11) : 1635 - 1646
  • [28] Approximation of definable sets by compact families, and upper bounds on homotopy and homology
    Gabrielov, Andrei
    Vorobjov, Nicolai
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 35 - 54
  • [29] Bounds on Cardinality of Multicomponent Network Codes
    Afanassiev, Valentin B.
    Gabidulin, Ernst M.
    Pilipchuk, Nina I.
    2014 XIV INTERNATIONAL SYMPOSIUM ON PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2014, : 10 - 14
  • [30] Bounds of cardinality on subspace network codes
    Gabidulin, E. M.
    Pilipchuk, N. I.
    2014 INTERNATIONAL CONFERENCE ON ENGINEERING AND TELECOMMUNICATION (EN&T 2014), 2014, : 8 - 12