Partitioning into Sets of Bounded Cardinality

被引:0
|
作者
Koivisto, Mikko [1 ]
机构
[1] Univ Helsinki, HIIT, Dept Comp Sci, FI-00014 Helsinki, Finland
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the partitions of an n-element set into A; members of a given set family can be counted in time O((2-epsilon)(n)), where epsilon > 0 depends only on the maximum size among the members of the family. Specifically, we give a simple combinatorial algorithm that counts the perfect matchings in a given graph on n vertices in time 0(poly(n)phi(n)), where phi = 1.618 ... is the golden ratio; this improves a previous bound based on fast matrix multiplication.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 50 条
  • [1] PARTITIONING BOUNDED SETS IN SYMMETRIC SPACES INTO SUBSETS WITH REDUCED DIAMETER
    Zhang, Xinling
    He, Chan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (03): : 703 - 713
  • [2] CARDINALITY OF DENSE SETS
    MEYER, PR
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1972, 75 (03): : 210 - &
  • [3] ON CARDINALITY OF DENSE SETS
    MEYER, PR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 583 - &
  • [4] Cardinality and relative cardinality on cubic intuitionistic fuzzy sets
    Manoharan P.
    Duraisamy J.
    Manoharan S.
    International Journal of Information Technology, 2024, 16 (7) : 4059 - 4068
  • [5] ON THE MINIMUM-CARDINALITY-BOUNDED-DIAMETER AND THE BOUNDED-CARDINALITY-MINIMUM-DIAMETER EDGE ADDITION PROBLEMS
    LI, CL
    MCCORMICK, ST
    SIMCHILEVI, D
    OPERATIONS RESEARCH LETTERS, 1992, 11 (05) : 303 - 308
  • [6] ON CARDINALITY OF ULTRAPRODUCT OF FINITE SETS
    SHELAH, S
    JOURNAL OF SYMBOLIC LOGIC, 1970, 35 (01) : 83 - &
  • [7] On the cardinality of the θ-closed hull of sets
    Cammaroto, Filippo
    Catalioto, Andrei
    Pansera, Bruno Antonio
    Tsaban, Boaz
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (18) : 2371 - 2378
  • [8] Fixed cardinality stable sets
    Samer, Phillippe
    Haugland, Dag
    DISCRETE APPLIED MATHEMATICS, 2021, 303 : 137 - 148
  • [9] Cardinality and Entropy for Bifuzzy Sets
    Patrascu, Vasile
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND METHODS, PT 1, 2010, 80 : 656 - 665
  • [10] On cardinality and singular fuzzy sets
    Dyczkowski, Krzysztof
    Wygralak, Maciej
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, PROCEEDINGS, 2001, 2206 : 261 - 268