On the cardinality of the θ-closed hull of sets

被引:5
|
作者
Cammaroto, Filippo [1 ]
Catalioto, Andrei [1 ]
Pansera, Bruno Antonio [1 ]
Tsaban, Boaz [2 ]
机构
[1] Univ Messina, Dipartimento Matemat, I-98166 Messina, Italy
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Urysohn space; n-Urysohn space; Finitely-Urysohn space; Urysohn number; H-closed space; H-set; theta-Closure; theta-Closed hull; theta-Tightness; theta-Bitightness; Finite theta-bitightness; theta-Bitightness small number; theta-Character; Character; Cardinal inequalities; TOPOLOGICAL-SPACE; URYSOHN SPACES; NUMBER;
D O I
10.1016/j.topol.2013.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theta-closed hull of a set A in a topological space is the smallest set C containing A such that, whenever all closed neighborhoods of a point intersect C, this point is in C. We define a new topological cardinal invariant function, the theta-bitightness small number of a space X, bts(0)(X), and prove that in every topological space X, the cardinality of the theta-closed hull of each set A is at most vertical bar A vertical bar(bts theta)(X). Using this result, we synthesize all earlier results on bounds on the cardinality of theta-closed hulls. We provide applications to P-spaces and to the almost-Lindelof number. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2371 / 2378
页数:8
相关论文
共 50 条
  • [1] On the cardinality of the θ-closed hull of sets II
    Cammaroto, Filippo
    Catalioto, Andrei
    Pansera, Bruno Antonio
    Porter, Jack
    FILOMAT, 2013, 27 (06) : 1107 - 1111
  • [2] A PSEUDOCOMPACT SPACE IN WHICH BUT THE SETS OF ITS CARDINALITY ARE NOT CLOSED AND DISCRETE
    REZNICHENKO, EA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (06): : 69 - 70
  • [3] STRONGLY CLOSED FINITE SETS OFTEN HAVE CARDINALITY 4
    DOOB, M
    VONOHLWEILER, HP
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (05): : 313 - 314
  • [4] CARDINALITY OF DENSE SETS
    MEYER, PR
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1972, 75 (03): : 210 - &
  • [5] ON CARDINALITY OF DENSE SETS
    MEYER, PR
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (03): : 583 - &
  • [6] ON CARDINALITY OF CLOSED SUBSETS
    MROWKA, S
    PERVIN, WJ
    KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETESCHAPPEN-PROCEEDINGS SERIES A-MATHEMATICAL SCIENCES, 1964, 67 (05): : 611 - &
  • [7] Cardinality and relative cardinality on cubic intuitionistic fuzzy sets
    Manoharan P.
    Duraisamy J.
    Manoharan S.
    International Journal of Information Technology, 2024, 16 (7) : 4059 - 4068
  • [8] ON CARDINALITY OF ULTRAPRODUCT OF FINITE SETS
    SHELAH, S
    JOURNAL OF SYMBOLIC LOGIC, 1970, 35 (01) : 83 - &
  • [9] Fixed cardinality stable sets
    Samer, Phillippe
    Haugland, Dag
    DISCRETE APPLIED MATHEMATICS, 2021, 303 : 137 - 148
  • [10] Partitioning into Sets of Bounded Cardinality
    Koivisto, Mikko
    PARAMETERIZED AND EXACT COMPUTATION, 2009, 5917 : 258 - 263