On the cardinality of the θ-closed hull of sets

被引:5
|
作者
Cammaroto, Filippo [1 ]
Catalioto, Andrei [1 ]
Pansera, Bruno Antonio [1 ]
Tsaban, Boaz [2 ]
机构
[1] Univ Messina, Dipartimento Matemat, I-98166 Messina, Italy
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Urysohn space; n-Urysohn space; Finitely-Urysohn space; Urysohn number; H-closed space; H-set; theta-Closure; theta-Closed hull; theta-Tightness; theta-Bitightness; Finite theta-bitightness; theta-Bitightness small number; theta-Character; Character; Cardinal inequalities; TOPOLOGICAL-SPACE; URYSOHN SPACES; NUMBER;
D O I
10.1016/j.topol.2013.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theta-closed hull of a set A in a topological space is the smallest set C containing A such that, whenever all closed neighborhoods of a point intersect C, this point is in C. We define a new topological cardinal invariant function, the theta-bitightness small number of a space X, bts(0)(X), and prove that in every topological space X, the cardinality of the theta-closed hull of each set A is at most vertical bar A vertical bar(bts theta)(X). Using this result, we synthesize all earlier results on bounds on the cardinality of theta-closed hulls. We provide applications to P-spaces and to the almost-Lindelof number. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2371 / 2378
页数:8
相关论文
共 50 条
  • [41] CARDINALITY OF GENERATING SETS FOR IDEALS OF A COMMUTATIVE RING
    GILMER, R
    HEINZER, W
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1977, 26 (04) : 791 - 798
  • [42] The number of Bh-sets of a given cardinality
    Dellamonica, Domingos, Jr.
    Kohayakawa, Yoshiharu
    Lee, Sang June
    Rodl, Vojtech
    Samotij, Wojciech
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2018, 116 : 629 - 669
  • [43] Cardinality bounds via covers by compact sets
    A. Bella
    N. Carlson
    Acta Mathematica Hungarica, 2021, 164 : 101 - 112
  • [44] Multilinear sets with two monomials and cardinality constraints
    Chen, Rui
    Dash, Sanjeeb
    Gunluk, Oktay
    DISCRETE APPLIED MATHEMATICS, 2023, 324 : 67 - 79
  • [45] A Functional Approach to Cardinality of Finite Fuzzy Sets
    Holcapek, Michal
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, PT II, 2014, 443 : 234 - 243
  • [46] On the Cardinality of Layers in Some Partially Ordered Sets
    Andreeva, T., V
    Semenov, Yu S.
    UCHENYE ZAPISKI KAZANSKOGO UNIVERSITETA-SERIYA FIZIKO-MATEMATICHESKIE NAUKI, 2020, 162 (03): : 269 - 284
  • [47] ON THE CARDINALITY OF SETS OF SEQUENCES WITH GIVEN MAXIMUM CORRELATION
    TIETAVAINEN, A
    DISCRETE MATHEMATICS, 1992, 106 : 471 - 477
  • [48] REMARK ON THE CARDINALITY OF THE INTUITIONISTIC FUZZY-SETS
    ATANASSOVA, LC
    FUZZY SETS AND SYSTEMS, 1995, 75 (03) : 399 - 400
  • [49] Sets with Cardinality Constraints in Satisfiability Modulo Theories
    Suter, Philippe
    Steiger, Robin
    Kuncak, Viktor
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, 2011, 6538 : 403 - 418
  • [50] On the Cardinality of Unique Range Sets with Weight One
    B. Chakraborty
    S. Chakraborty
    Ukrainian Mathematical Journal, 2020, 72 : 1164 - 1174