On the cardinality of the θ-closed hull of sets

被引:5
|
作者
Cammaroto, Filippo [1 ]
Catalioto, Andrei [1 ]
Pansera, Bruno Antonio [1 ]
Tsaban, Boaz [2 ]
机构
[1] Univ Messina, Dipartimento Matemat, I-98166 Messina, Italy
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Urysohn space; n-Urysohn space; Finitely-Urysohn space; Urysohn number; H-closed space; H-set; theta-Closure; theta-Closed hull; theta-Tightness; theta-Bitightness; Finite theta-bitightness; theta-Bitightness small number; theta-Character; Character; Cardinal inequalities; TOPOLOGICAL-SPACE; URYSOHN SPACES; NUMBER;
D O I
10.1016/j.topol.2013.07.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theta-closed hull of a set A in a topological space is the smallest set C containing A such that, whenever all closed neighborhoods of a point intersect C, this point is in C. We define a new topological cardinal invariant function, the theta-bitightness small number of a space X, bts(0)(X), and prove that in every topological space X, the cardinality of the theta-closed hull of each set A is at most vertical bar A vertical bar(bts theta)(X). Using this result, we synthesize all earlier results on bounds on the cardinality of theta-closed hulls. We provide applications to P-spaces and to the almost-Lindelof number. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2371 / 2378
页数:8
相关论文
共 50 条
  • [21] Note on the cardinality of some sets of clones
    Pantovic, Jovanka
    Vojvodic, Dusan
    Acta Cybernetica, 2000, 14 (03): : 491 - 495
  • [22] On the cardinality of positively linearly independent sets
    W. Hare
    H. Song
    Optimization Letters, 2016, 10 : 649 - 654
  • [23] On the cardinality of lower sets and universal discretization
    Dai, F.
    Prymak, A.
    Shadrin, A.
    Temlyakov, V. N.
    Tikhonov, S.
    JOURNAL OF COMPLEXITY, 2023, 76
  • [24] CONTINUOUS AND EXACT SETS OF SPECIFIED CARDINALITY
    NICOL, SJ
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (03): : 211 - 224
  • [25] THEOREMS ON CARDINALITY OF FAMILIES OF SETS IN BICOMPACTA
    ARKHANGELSKII, AV
    DOKLADY AKADEMII NAUK SSSR, 1976, 226 (05): : 993 - 997
  • [26] On the cardinality of positively linearly independent sets
    Hare, W.
    Song, H.
    OPTIMIZATION LETTERS, 2016, 10 (04) : 649 - 654
  • [27] Polynomial constraints for sets with cardinality bounds
    Marnette, Bruno
    Kuncak, Viktor
    Rinard, Martin
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2007, 4423 : 258 - +
  • [28] On Ralescu's cardinality of fuzzy sets
    Bartl, Eduard
    Belohlavek, Radim
    FUZZY SETS AND SYSTEMS, 2025, 498
  • [29] ON THE RANK AND CARDINALITY OF NOETHERIAN FAMILIES OF SETS
    PEREGUDOV, SA
    RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (06) : 221 - 222
  • [30] Questions of cardinality of finite fuzzy sets
    Wygralak, M
    FUZZY SETS AND SYSTEMS, 1999, 102 (02) : 185 - 210