Partitioning into Sets of Bounded Cardinality

被引:0
|
作者
Koivisto, Mikko [1 ]
机构
[1] Univ Helsinki, HIIT, Dept Comp Sci, FI-00014 Helsinki, Finland
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that the partitions of an n-element set into A; members of a given set family can be counted in time O((2-epsilon)(n)), where epsilon > 0 depends only on the maximum size among the members of the family. Specifically, we give a simple combinatorial algorithm that counts the perfect matchings in a given graph on n vertices in time 0(poly(n)phi(n)), where phi = 1.618 ... is the golden ratio; this improves a previous bound based on fast matrix multiplication.
引用
收藏
页码:258 / 263
页数:6
相关论文
共 50 条
  • [21] On the cardinality of positively linearly independent sets
    W. Hare
    H. Song
    Optimization Letters, 2016, 10 : 649 - 654
  • [22] On the cardinality of lower sets and universal discretization
    Dai, F.
    Prymak, A.
    Shadrin, A.
    Temlyakov, V. N.
    Tikhonov, S.
    JOURNAL OF COMPLEXITY, 2023, 76
  • [23] CONTINUOUS AND EXACT SETS OF SPECIFIED CARDINALITY
    NICOL, SJ
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1989, 35 (03): : 211 - 224
  • [24] THEOREMS ON CARDINALITY OF FAMILIES OF SETS IN BICOMPACTA
    ARKHANGELSKII, AV
    DOKLADY AKADEMII NAUK SSSR, 1976, 226 (05): : 993 - 997
  • [25] On the cardinality of positively linearly independent sets
    Hare, W.
    Song, H.
    OPTIMIZATION LETTERS, 2016, 10 (04) : 649 - 654
  • [26] Polynomial constraints for sets with cardinality bounds
    Marnette, Bruno
    Kuncak, Viktor
    Rinard, Martin
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATIONAL STRUCTURES, PROCEEDINGS, 2007, 4423 : 258 - +
  • [27] On Ralescu's cardinality of fuzzy sets
    Bartl, Eduard
    Belohlavek, Radim
    FUZZY SETS AND SYSTEMS, 2025, 498
  • [28] ON THE RANK AND CARDINALITY OF NOETHERIAN FAMILIES OF SETS
    PEREGUDOV, SA
    RUSSIAN MATHEMATICAL SURVEYS, 1984, 39 (06) : 221 - 222
  • [29] On the cardinality of the θ-closed hull of sets II
    Cammaroto, Filippo
    Catalioto, Andrei
    Pansera, Bruno Antonio
    Porter, Jack
    FILOMAT, 2013, 27 (06) : 1107 - 1111
  • [30] Questions of cardinality of finite fuzzy sets
    Wygralak, M
    FUZZY SETS AND SYSTEMS, 1999, 102 (02) : 185 - 210