Motion correction and volumetric reconstruction for fetal functional magnetic resonance imaging data

被引:12
|
作者
Sobotka, Daniel [1 ]
Ebner, Michael [3 ]
Schwartz, Ernst [1 ]
Nenning, Karl-Heinz [1 ,4 ]
Taymourtash, Athena [1 ]
Vercauteren, Tom [3 ]
Ourselin, Sebastien [3 ]
Kasprian, Gregor [2 ]
Prayer, Daniela [2 ]
Langs, Georg [1 ]
Licandro, Roxane [1 ,5 ,6 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Computat Imaging Res Lab, Vienna, Austria
[2] Med Univ Vienna, Dept Biomed Imaging & Image guided Therapy, Div Neuroradiol & Musculoskeletal Radiol, Vienna, Austria
[3] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[4] Nathan S Kline Inst Psychiat Res, Ctr Biomed Imaging & Neuromodulat, Orangeburg, NY USA
[5] Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Lab Computat Neuroimaging, Charlestown, MA USA
[6] Harvard Med Sch, Charlestown, MA USA
基金
奥地利科学基金会; 英国惠康基金; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Fetal fMRI; Motion correction; Regularization; Functional connectivity; IN-UTERO; BRAIN; CONNECTIVITY; FMRI; ROBUST; MRI; CORTEX; REGISTRATION; ARTIFACTS; FRAMEWORK;
D O I
10.1016/j.neuroimage.2022.119213
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Motion correction is an essential preprocessing step in functional Magnetic Resonance Imaging (fMRI) of the fetal brain with the aim to remove artifacts caused by fetal movement and maternal breathing and consequently to suppress erroneous signal correlations. Current motion correction approaches for fetal fMRI choose a single 3D volume from a specific acquisition timepoint with least motion artefacts as reference volume, and perform interpolation for the reconstruction of the motion corrected time series. The results can suffer, if no low-motion frame is available, and if reconstruction does not exploit any assumptions about the continuity of the fMRI signal. Here, we propose a novel framework, which estimates a high-resolution reference volume by using outlier robust motion correction, and by utilizing Huber L2 regularization for intra-stack volumetric reconstruction of the motion-corrected fetal brain fMRI. We performed an extensive parameter study to investigate the effectiveness of motion estimation and present in this work benchmark metrics to quantify the effect of motion correction and regularised volumetric reconstruction approaches on functional connectivity computations. We demonstrate the proposed framework's ability to improve functional connectivity estimates, reproducibility and signal interpretability, which is clinically highly desirable for the establishment of prognostic noninvasive imaging biomarkers. The motion correction and volumetric reconstruction framework is made available as an open-source package of NiftyMIC.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Magnetic Resonance-Based Motion Correction for Positron Emission Tomography Imaging
    Ouyang, Jinsong
    Li, Quanzheng
    El Fakhri, Georges
    SEMINARS IN NUCLEAR MEDICINE, 2013, 43 (01) : 60 - 67
  • [42] Autofocusing plus : Noise-Resilient Motion Correction in Magnetic Resonance Imaging
    Kuzmina, Ekaterina
    Razumov, Artem
    Rogov, Oleg Y.
    Adalsteinsson, Elfar
    White, Jacob
    Dylov, Dmitry V.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VI, 2022, 13436 : 365 - 375
  • [43] Measurement and Correction of Microscopic Head Motion during Magnetic Resonance Imaging of the Brain
    Maclaren, Julian
    Armstrong, Brian S. R.
    Barrows, Robert T.
    Danishad, K. A.
    Ernst, Thomas
    Foster, Colin L.
    Gumus, Kazim
    Herbst, Michael
    Kadashevich, Ilja Y.
    Kusik, Todd P.
    Li, Qiaotian
    Lovell-Smith, Cris
    Prieto, Thomas
    Schulze, Peter
    Speck, Oliver
    Stucht, Daniel
    Zaitsev, Maxim
    PLOS ONE, 2012, 7 (11):
  • [44] Prospective and retrospective motion correction in diffusion magnetic resonance imaging of the human brain
    Kober, Tobias
    Gruetter, Rolf
    Krueger, Gunnar
    NEUROIMAGE, 2012, 59 (01) : 389 - 398
  • [45] Fetal cardiovascular magnetic resonance imaging
    Aguet, Julien
    Seed, Mike
    Marini, Davide
    PEDIATRIC RADIOLOGY, 2020, 50 (13) : 1881 - 1894
  • [46] Magnetic resonance imaging of the fetal brain
    Bilaniuk, LT
    SEMINARS IN ROENTGENOLOGY, 1999, 34 (01) : 48 - 61
  • [47] Fetal magnetic resonance imaging of lymphangiomas
    Koelblinger, Claus
    Herold, Christian
    Nemec, Stefan
    Berger-Kulemann, Vanessa
    Brugger, Peter C.
    Koller, Anke
    Tonnhofer, Ursula
    Bettelheim, Dieter
    Prayer, Daniela
    JOURNAL OF PERINATAL MEDICINE, 2013, 41 (04) : 437 - 443
  • [48] Fast fetal magnetic resonance imaging
    Sandrasegaran, K
    Lall, C
    Aisen, AA
    Rajesh, A
    Cohen, MD
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2005, 29 (04) : 487 - 498
  • [49] The role of fetal magnetic resonance imaging
    Wright, C.
    Sibley, C. P.
    Baker, P. N.
    ARCHIVES OF DISEASE IN CHILDHOOD-FETAL AND NEONATAL EDITION, 2010, 95 (02): : F137 - F141
  • [50] Fetal magnetic resonance imaging: a review
    Laifer-Narin, Sherelle
    Budorick, Nancy E.
    Simpson, Lynn L.
    Platt, Lawrence D.
    CURRENT OPINION IN OBSTETRICS & GYNECOLOGY, 2007, 19 (02) : 151 - 156