Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing

被引:41
|
作者
Bao, Liying [1 ,2 ]
Qi, Bo [1 ,2 ]
Dong, Daoyi [3 ]
Nori, Franco [4 ,5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[4] RIKEN, Theoret Quantum Phys Lab, Saitama 3510198, Japan
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本学术振兴会; 日本科学技术振兴机构; 中国国家自然科学基金;
关键词
EXCEPTIONAL POINTS; PHYSICS; STATES;
D O I
10.1103/PhysRevA.103.042418
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and nonreciprocity can be a powerful resource for non-Hermitian quantum sensing, as nonreciprocity allows to arbitrarily exceed the fundamental bound on the measurement rate of any reciprocal sensors. Here we establish fundamental limits on signal-to-noise ratio for reciprocal and nonreciprocal non-Hermitian quantum sensing. In particular, for two-mode linear systems with two coherent drives, an approximately attainable uniform bound on the best possiblemeasurement rate per photon is derived for both reciprocal and nonreciprocal sensors. This bound is only related to the coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate that a conventional reciprocal sensor with two drives can simulate any nonreciprocal sensor. This work also demonstrates a clear signature on how the excitation signals affect the signal-to-noise ratio in non-Hermitian quantum sensing.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Relating non-Hermitian and Hermitian quantum systems at criticality
    Hsieh, Chang -Tse
    Chang, Po-Yao
    SCIPOST PHYSICS CORE, 2023, 6 (03):
  • [32] Hermitian and non-Hermitian description of quantum wave propagation
    Villavicencio, J.
    Romo, R.
    Munoz-Rodriguez, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
  • [33] Complexity geometry in Hermitian and non-Hermitian quantum dynamics
    Lv, Chenwei
    Zhou, Qi
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [34] Quantum battery with non-Hermitian charging
    Konar, Tanoy Kanti
    Lakkaraju, Leela Ganesh Chandra
    Sen , Aditi
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [35] Pseudospectra in non-Hermitian quantum mechanics
    Krejcirik, D.
    Siegl, P.
    Tater, M.
    Viola, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [36] Relativistic non-Hermitian quantum mechanics
    Jones-Smith, Katherine
    Mathur, Harsh
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [37] A quantum system with a non-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    Nishiyama, S.
    da Providencia, J. P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)
  • [38] Quantum entanglement of non-Hermitian quasicrystals
    Chen, Li-Mei
    Zhou, Yao
    Chen, Shuai A.
    Ye, Peng
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [39] Entanglement in non-Hermitian quantum theory
    Pati, Arun K.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (03): : 485 - 498
  • [40] Non-Hermitian quantum Fermi accelerator
    Fring, Andreas
    Taira, Takanobu
    PHYSICAL REVIEW A, 2023, 108 (01)