Quantum entanglement of non-Hermitian quasicrystals

被引:22
|
作者
Chen, Li-Mei [1 ,2 ]
Zhou, Yao [1 ,2 ]
Chen, Shuai A. [3 ,4 ]
Ye, Peng [1 ,2 ,5 ]
机构
[1] Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
关键词
FIELD;
D O I
10.1103/PhysRevB.105.L121115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a hallmark of a pure quantum effect, quantum entanglement has provided unconventional routes to characterize condensed matter systems. Here, from the perspective of quantum entanglement, we disclose exotic quantum physics in non-Hermitian quasicrystals. We study a class of experimentally realizable models for non-Hermitian quasicrystal chains, in which asymmetric hopping and complex potential coexist. We diagnose the global phase diagram by means of entanglement from both the real-space and momentum-space partitions. By measuring the entanglement entropy, we numerically determine the metal-insulator transition point. We com-bine real-space and momentum-space entanglement spectra to complementarily characterize the delocalization phase and the localization phase. Inspired by the entanglement spectrum, we further analytically prove that a duality exists between the two phase regions. The transition point is self-dual and exact, further validating the numerical result from diagonalizing non-Hermitian matrices. Finally, we identify the mobility edge by means of entanglement.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Entanglement phase transitions in non-Hermitian quasicrystals
    Zhou, Longwen
    PHYSICAL REVIEW B, 2024, 109 (02)
  • [2] Entanglement in non-Hermitian quantum theory
    Pati, Arun K.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (03): : 485 - 498
  • [3] Entanglement in non-Hermitian quantum theory
    Arun K. Pati
    Pramana, 2009, 73 : 485 - 498
  • [4] Quantum entanglement in non-Hermitian Hubbard model
    Lima, L. S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2024, 156
  • [5] Bipartite entanglement in non-Hermitian quantum spin systems
    Lima, L. S.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2023, 148
  • [6] Entanglement and Purification Transitions in Non-Hermitian Quantum Mechanics
    Gopalakrishnan, Sarang
    Gullans, Michael J.
    PHYSICAL REVIEW LETTERS, 2021, 126 (17)
  • [7] Dynamical localization in non-Hermitian quasicrystals
    Dai, C. M.
    Zhang, Yunbo
    Yi, X. X.
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [8] Quantum correlation, entanglement in the kagome lattice non-Hermitian quantum systems
    Lima, L. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 649
  • [9] Non-Hermitian quantum dynamics and entanglement of coupled nonlinear resonators
    Karakaya, Evren
    Altintas, Ferdi
    Guven, Kaan
    Mustecaplioglu, Ozgur E.
    EPL, 2014, 105 (04)
  • [10] Scrambling and operator entanglement in local non-Hermitian quantum systems
    Barch B.
    Anand N.
    Marshall J.
    Rieffel E.
    Zanardi P.
    Physical Review B, 2023, 108 (13)