Quantum entanglement of non-Hermitian quasicrystals

被引:22
|
作者
Chen, Li-Mei [1 ,2 ]
Zhou, Yao [1 ,2 ]
Chen, Shuai A. [3 ,4 ]
Ye, Peng [1 ,2 ,5 ]
机构
[1] Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
[2] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Sun Yat Sen Univ, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Peoples R China
关键词
FIELD;
D O I
10.1103/PhysRevB.105.L121115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a hallmark of a pure quantum effect, quantum entanglement has provided unconventional routes to characterize condensed matter systems. Here, from the perspective of quantum entanglement, we disclose exotic quantum physics in non-Hermitian quasicrystals. We study a class of experimentally realizable models for non-Hermitian quasicrystal chains, in which asymmetric hopping and complex potential coexist. We diagnose the global phase diagram by means of entanglement from both the real-space and momentum-space partitions. By measuring the entanglement entropy, we numerically determine the metal-insulator transition point. We com-bine real-space and momentum-space entanglement spectra to complementarily characterize the delocalization phase and the localization phase. Inspired by the entanglement spectrum, we further analytically prove that a duality exists between the two phase regions. The transition point is self-dual and exact, further validating the numerical result from diagonalizing non-Hermitian matrices. Finally, we identify the mobility edge by means of entanglement.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Non-Hermitian quantum fractals
    Sun, Junsong
    Li, Chang-An
    Guo, Qingyang
    Zhang, Weixuan
    Feng, Shiping
    Zhang, Xiangdong
    Guo, Huaiming
    Trauzettel, Bjoern
    PHYSICAL REVIEW B, 2024, 110 (20)
  • [22] Non-hermitian quantum thermodynamics
    Gardas, Bartlomiej
    Deffner, Sebastian
    Saxena, Avadh
    SCIENTIFIC REPORTS, 2016, 6
  • [23] Non-Hermitian topology and entanglement in an optomechanical superlattice
    Brzezicki, Wojciech
    Hyart, Timo
    Massel, Francesco
    Physical Review Research, 7 (01):
  • [24] Entanglement Hamiltonian in the non-Hermitian SSH model
    Rottoli, Federico
    Fossati, Michele
    Calabrese, Pasquale
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (06):
  • [25] Entanglement dynamics of two non-Hermitian qubits
    Zhang, Yi-Xi
    Zhang, Zhen-Tao
    Wei, Xiao-Zhi
    Liang, Bao-Long
    Mei, Feng
    Yang, Zhen-Shan
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2024, 57 (08)
  • [26] A Hermitian bypass to the non-Hermitian quantum theory
    Bhasin, Priyanshi
    Das, Tanmoy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (12)
  • [27] Entanglement entropy of non-Hermitian free fermions
    Guo, Yi-Bin
    Yu, Yi-Cong
    Huang, Rui-Zhen
    Yang, Li-Ping
    Chi, Run-Ze
    Liao, Hai-Jun
    Xiang, Tao
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (47)
  • [28] Negativity as Entanglement Degree of a Non-Hermitian Model
    K. Saaidi
    G. Ghafori
    M. M. Soltanzadeh
    International Journal of Theoretical Physics, 2009, 48 : 1659 - 1668
  • [29] Negativity as Entanglement Degree of a Non-Hermitian Model
    Saaidi, K.
    Ghafori, G.
    Soltanzadeh, M. M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (06) : 1659 - 1668
  • [30] Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems
    Okuma, Nobuyuki
    Sato, Masatoshi
    PHYSICAL REVIEW B, 2021, 103 (08)