Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing

被引:41
|
作者
Bao, Liying [1 ,2 ]
Qi, Bo [1 ,2 ]
Dong, Daoyi [3 ]
Nori, Franco [4 ,5 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Syst & Control, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[4] RIKEN, Theoret Quantum Phys Lab, Saitama 3510198, Japan
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
日本学术振兴会; 日本科学技术振兴机构; 中国国家自然科学基金;
关键词
EXCEPTIONAL POINTS; PHYSICS; STATES;
D O I
10.1103/PhysRevA.103.042418
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and nonreciprocity can be a powerful resource for non-Hermitian quantum sensing, as nonreciprocity allows to arbitrarily exceed the fundamental bound on the measurement rate of any reciprocal sensors. Here we establish fundamental limits on signal-to-noise ratio for reciprocal and nonreciprocal non-Hermitian quantum sensing. In particular, for two-mode linear systems with two coherent drives, an approximately attainable uniform bound on the best possiblemeasurement rate per photon is derived for both reciprocal and nonreciprocal sensors. This bound is only related to the coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate that a conventional reciprocal sensor with two drives can simulate any nonreciprocal sensor. This work also demonstrates a clear signature on how the excitation signals affect the signal-to-noise ratio in non-Hermitian quantum sensing.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] NON-HERMITIAN ADIABATIC QUANTUM OPTIMIZATION
    Berman, Gennady P.
    Nesterov, Alexander I.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (08) : 1469 - 1478
  • [42] Non-Hermitian noncommutative quantum mechanics
    J. F. G. dos Santos
    F. S. Luiz
    O. S. Duarte
    M. H. Y. Moussa
    The European Physical Journal Plus, 134
  • [43] Non-Hermitian quantum quenches in holography
    Morales-Tejera, Sergio
    Landsteiner, Karl
    SCIPOST PHYSICS, 2023, 14 (03):
  • [44] Editorial: Non-Hermitian quantum mechanics
    Hatano, Naomichi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):
  • [45] Non-Hermitian Quantum Annealing and Superradiance
    Nesterov, Alexander I.
    Berman, Gennady P.
    Aceves de la Cruz, Fermin
    Beas Zepeda, Juan Carlos
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 329 - 344
  • [46] Non-Hermitian approach for quantum plasmonics
    Cortes, Cristian L.
    Otten, Matthew
    Gray, Stephen K.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (08):
  • [47] Non-Hermitian quantum field theory
    Bender, CM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (19): : 4646 - 4652
  • [48] Quantum non-Hermitian topological sensors
    Koch, Florian
    Budich, Jan Carl
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):
  • [49] Entanglement in non-Hermitian quantum theory
    Arun K. Pati
    Pramana, 2009, 73 : 485 - 498
  • [50] Non-Hermitian noncommutative quantum mechanics
    dos Santos, J. F. G.
    Luiz, F. S.
    Duarte, O. S.
    Moussa, M. H. Y.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (07):