An approximation algorithm based on chain implication for constrained minimum vertex covers in bipartite graphs

被引:0
|
作者
Wang, Jianxin [1 ]
Xu, Xiaoshuang [1 ]
Chen, Jianer [1 ,2 ]
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
[2] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant epsilon > 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (k(u), k(l)), our algorithm constructs a vertex cover of size (k(u)(*) , k(l)(*)), satisfying max {k(u)(*)/k(u) , k(l)(*) /k(l)} <= 1 + epsilon.
引用
收藏
页码:760 / +
页数:2
相关论文
共 50 条
  • [41] An approximation algorithm for minimum-cost vertex-connectivity problems
    Ravi, R
    Williamson, DP
    ALGORITHMICA, 1997, 18 (01) : 21 - 43
  • [42] An approximation algorithm for weighted weak vertex cover problem in undirected graphs
    Zhang, Y
    Zhu, H
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2004, 3106 : 143 - 150
  • [43] Linear time algorithm for the vertex-edge domination problem in convex bipartite graphs
    Buyukcolak, Yasemin
    DISCRETE OPTIMIZATION, 2025, 55
  • [44] A Faster Algorithm for Minimum-Cost Bipartite Perfect Matching in Planar Graphs
    Asathulla, Mudabir Kabir
    Khanna, Sanjeev
    Lahn, Nathaniel
    Raghvendra, Sharath
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 457 - 476
  • [45] A Faster Algorithm for Minimum-cost Bipartite Perfect Matching in Planar Graphs
    Asathulla, Mudabir Kabir
    Khanna, Sanjeev
    Lahn, Nathaniel
    Raghvendra, Sharath
    ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (01)
  • [46] A 9/7-approximation algorithm for Graphic TSP in cubic bipartite graphs
    Karp, Jeremy A.
    Ravi, R.
    DISCRETE APPLIED MATHEMATICS, 2016, 209 : 164 - 216
  • [47] A 27/26-approximation algorithm for the chromatic sum coloring of bipartite graphs
    Giaro, K
    Janczewski, R
    Kubale, M
    Malafiejski, M
    APPROXIMATION ALGORITHMS FOR COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2002, 2462 : 135 - 145
  • [48] An algorithm for solving the minimum vertex ranking spanning tree problem on interval graphs
    Nakayama, SI
    Masuyama, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2003, E86A (05): : 1019 - 1026
  • [49] A Smart Approximation Algorithm for Minimum Vertex Cover Problem based on Min-to-Min (MtM) Strategy
    Haider, Jawad
    Fayaz, Muhammad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (12) : 250 - 259
  • [50] A memetic algorithm for minimum-cost vertex-biconnectivity augmentation of graphs
    Ljubic, I
    Raidl, GR
    JOURNAL OF HEURISTICS, 2003, 9 (05) : 401 - 427