An approximation algorithm based on chain implication for constrained minimum vertex covers in bipartite graphs

被引:0
|
作者
Wang, Jianxin [1 ]
Xu, Xiaoshuang [1 ]
Chen, Jianer [1 ,2 ]
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
[2] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant epsilon > 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (k(u), k(l)), our algorithm constructs a vertex cover of size (k(u)(*) , k(l)(*)), satisfying max {k(u)(*)/k(u) , k(l)(*) /k(l)} <= 1 + epsilon.
引用
收藏
页码:760 / +
页数:2
相关论文
共 50 条
  • [11] A 2/3-APPROXIMATION ALGORITHM FOR VERTEX WEIGHTED MATCHING IN BIPARTITE GRAPHS
    Dobrian, Florin
    Halappanavar, Mahantesh
    Pothen, Alex
    Al-Herz, Ahmed
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (01): : A566 - A591
  • [12] Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs
    Liang, YD
    Chang, MS
    ACTA INFORMATICA, 1997, 34 (05) : 337 - 346
  • [13] Minimum feedback vertex sets in cocomparability graphs and convex bipartite graphs
    Liang Y.D.
    Chang M.-S.
    Acta Informatica, 1997, 34 (5) : 337 - 346
  • [15] On the approximation of minimum cost homomorphism to bipartite graphs
    Mastrolilli, Monaldo
    Rafiey, Arash
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (4-5) : 670 - 676
  • [16] Improved Approximation Algorithms for Path Vertex Covers in Regular Graphs
    An Zhang
    Yong Chen
    Zhi-Zhong Chen
    Guohui Lin
    Algorithmica, 2020, 82 : 3041 - 3064
  • [17] Improved Approximation Algorithms for Path Vertex Covers in Regular Graphs
    Zhang, An
    Chen, Yong
    Chen, Zhi-Zhong
    Lin, Guohui
    ALGORITHMICA, 2020, 82 (10) : 3041 - 3064
  • [18] On Minimum Feedback Vertex Sets in Bipartite Graphs and Degree-Constraint Graphs
    Takaoka, Asahi
    Tayu, Satoshi
    Ueno, Shuichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (11): : 2327 - 2332
  • [19] IMPROVED APPROXIMATION OF MAXIMUM VERTEX COVERAGE PROBLEM ON BIPARTITE GRAPHS
    Apollonio, Nicola
    Simeone, Bruno
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (03) : 1137 - 1151
  • [20] d-Transversals of stable sets and vertex covers in weighted bipartite graphs
    Bentz, C.
    Costa, M. -C.
    Picouleau, C.
    Ries, B.
    de Werrae, D.
    JOURNAL OF DISCRETE ALGORITHMS, 2012, 17 : 95 - 102