An approximation algorithm based on chain implication for constrained minimum vertex covers in bipartite graphs

被引:0
|
作者
Wang, Jianxin [1 ]
Xu, Xiaoshuang [1 ]
Chen, Jianer [1 ,2 ]
机构
[1] Cent South Univ, Sch Informat Sci & Engn, Changsha 410083, Peoples R China
[2] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The constrained minimum vertex cover problem on bipartite graphs (the Min-CVCB problem) is an NP-complete problem. This paper presents a polynomial time approximation algorithm for the problem based on the technique of chain implication. For any given constant epsilon > 0, if an instance of the Min-CVCB problem has a minimum vertex cover of size (k(u), k(l)), our algorithm constructs a vertex cover of size (k(u)(*) , k(l)(*)), satisfying max {k(u)(*)/k(u) , k(l)(*) /k(l)} <= 1 + epsilon.
引用
收藏
页码:760 / +
页数:2
相关论文
共 50 条
  • [31] EFFICIENT ALGORITHM FOR MINIMUM K-COVERS IN WEIGHTED GRAPHS
    WHITE, LJ
    GILLENSON, ML
    MATHEMATICAL PROGRAMMING, 1975, 8 (01) : 20 - 42
  • [32] An efficient algorithm for minimum feedback vertex sets in rotator graphs
    Kuo, Chi-Jung
    Hsu, Chiun-Chieh
    Lin, Hon-Ren
    Lin, Kung-Kuei
    INFORMATION PROCESSING LETTERS, 2009, 109 (09) : 450 - 453
  • [33] Purely combinatorial approximation algorithms for maximum k-vertex cover in bipartite graphs
    Bonnet, Edouard
    Escoffier, Bruno
    Paschos, Vangelis Th.
    Stamoulis, Georgios
    DISCRETE OPTIMIZATION, 2018, 27 : 26 - 56
  • [34] A 7/6-approximation algorithm for the minimum 2-edge connected subgraph problem in bipartite cubic graphs
    Takazawa, Kenjiro
    INFORMATION PROCESSING LETTERS, 2016, 116 (09) : 550 - 553
  • [35] Computing-Based Performance Analysis of Approximation Algorithms for the Minimum Weight Vertex Cover Problem of Graphs
    Taoka, Satoshi
    Takafuji, Daisuke
    Watanabe, Toshimasa
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (06) : 1331 - 1339
  • [36] Stochastic Minimum Vertex Cover in General Graphs: A 3/2-Approximation
    Derakhshan, Mahsa
    Durvasula, Naveen
    Haghtalab, Nika
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 242 - 253
  • [37] HALF-INTEGRAL VERTEX COVERS ON BIPARTITE BIDIRECTED GRAPHS: TOTAL DUAL INTEGRALITY AND CUT-RANK
    Del Pia, Alberto
    Zambelli, Giacomo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) : 1281 - 1296
  • [38] COMBINATORIAL APPROXIMATION OF MAXIMUM k-VERTEX COVER IN BIPARTITE GRAPHS WITHIN RATIO 0.7
    Paschos, Vangelis Th.
    RAIRO-OPERATIONS RESEARCH, 2018, 52 (01) : 305 - 314
  • [39] An approximation algorithm for minimum-cost vertex-connectivity problems
    R. Ravi
    D. P. Williamson
    Algorithmica, 1997, 18 : 21 - 43
  • [40] Approximation algorithm for minimum connected 3-path vertex cover
    Liu, Pengcheng
    Zhang, Zhao
    Li, Xianyue
    Wu, Weili
    DISCRETE APPLIED MATHEMATICS, 2020, 287 : 77 - 84