A 9/7-approximation algorithm for Graphic TSP in cubic bipartite graphs

被引:6
|
作者
Karp, Jeremy A. [1 ]
Ravi, R. [1 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Approximation algorithms; Traveling salesman problem; Barnette's conjecture; Combinatorial optimization;
D O I
10.1016/j.dam.2015.10.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove new results for approximating the Graphic TSP. Specifically, we provide a polynomial-time 9/7-approximation algorithm for cubic bipartite graphs and a (9/7 + 1/21(k-2))-approximation algorithm for k-regular bipartite graphs, both of which are improved approximation factors compared to previous results. Our approach involves finding a cycle cover with relatively few cycles, which we are able to do by leveraging the fact that all cycles in bipartite graphs are of even length along with our knowledge of the structure of cubic graphs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:164 / 216
页数:53
相关论文
共 28 条
  • [1] APPROXIMATION HARDNESS OF GRAPHIC TSP ON CUBIC GRAPHS
    Karpinski, Marek
    Schmied, Richard
    RAIRO-OPERATIONS RESEARCH, 2015, 49 (04) : 651 - 668
  • [2] 8/7-Approximation Algorithm for (1,2)-TSP
    Berman, Piotr
    Karpinski, Marek
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 641 - +
  • [3] Graphic TSP in Cubic Graphs
    Dvorak, Zdenek
    Kral, Daniel
    Mohar, Bojan
    34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017), 2017, 66
  • [4] 13/9-approximation for Graphic TSP
    Mucha, Marcin
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 30 - 41
  • [5] 13/9-Approximation for Graphic TSP
    Mucha, Marcin
    THEORY OF COMPUTING SYSTEMS, 2014, 55 (04) : 640 - 657
  • [6] A 7/6-approximation algorithm for the minimum 2-edge connected subgraph problem in bipartite cubic graphs
    Takazawa, Kenjiro
    INFORMATION PROCESSING LETTERS, 2016, 116 (09) : 550 - 553
  • [7] A 12/7-approximation algorithm for the discrete Bamboo Garden Trimming problem
    van Ee, Martijn
    OPERATIONS RESEARCH LETTERS, 2021, 49 (05) : 645 - 649
  • [8] A 4/3-approximation for TSP on cubic 3-edge-connected graphs
    Agarwal, Nishita
    Garg, Naveen
    Gupta, Swati
    OPERATIONS RESEARCH LETTERS, 2018, 46 (04) : 393 - 396
  • [9] A 7/8-approximation algorithm for metric max TSP
    Hassin, R
    Rubinstein, S
    INFORMATION PROCESSING LETTERS, 2002, 81 (05) : 247 - 251
  • [10] A 7/8-approximation algorithm for metric max TSP
    Hassin, R
    Rubinstein, S
    ALGORITHMS AND DATA STRUCTURES, 2001, 2125 : 205 - 209