The Local hybrid Monte Carlo algorithm for free field theory: Reexamining overrelaxation

被引:0
|
作者
Horvath, I [1 ]
Kennedy, AD [1 ]
机构
[1] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
关键词
Monte Carlo methods; lattice field theory; overrelaxation algorithms; dynamical critical exponents; Markov processes; critical slowing down;
D O I
10.1016/S0550-3213(97)00695-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the autocorrelations for the Local Hybrid Monte Carlo algorithm [A.D. Kennedy, Nucl. Phys. B (Proc. Suppl.) 30 (1993) 96] in the context of free field theory. In this case this is just Adler's overrelaxation algorithm [S.L. Adler, Phys. Rev. D 23 (1981) 2901]. We consider the algorithm with even/odd, lexicographic, and random updates, and show that its efficiency depends crucially on this ordering of sites when optimized for a given class of operators. In particular, we show that, contrary to previous expectations, it is possible to eliminate critical slowing down (z(int) = 0) for a class of interesting observables, including the magnetic susceptibility: this can be done with lexicographic updates but is not possible with even/odd(z(int) = 1) or random (z(int) = 2) updates. We are considering the dynamical critical exponent tint for integrated autocorrelations rather than for the exponential autocorrelation time; this is reasonable because it is the integrated autocorrelation which determines the cost of. Monte Carlo computation. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:367 / 400
页数:34
相关论文
共 50 条
  • [1] The Local Hybrid Monte Carlo algorithm for free field theory: Reexamining overrelaxation
    Horvath, I.
    Kennedy, A. D.
    Nuclear Physics, Section B, 510 (01):
  • [2] Cost of the generalised hybrid Monte Carlo algorithm for free field theory
    Kennedy, AD
    Pendleton, B
    NUCLEAR PHYSICS B, 2001, 607 (03) : 456 - 510
  • [3] Mean field theory of the swap Monte Carlo algorithm
    Ikeda, Harukuni
    Zamponi, Francesco
    Ikeda, Atsushi
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (23):
  • [4] Accelerating the hybrid Monte Carlo algorithm
    Khan, AA
    Bakeyev, T
    Göckeler, M
    Horsley, R
    Pleiter, D
    Rakow, P
    Schäfer, A
    Schierholz, G
    Stüben, H
    PHYSICS LETTERS B, 2003, 564 (3-4) : 235 - 240
  • [5] A polynomial hybrid Monte Carlo algorithm
    Frezzotti, R
    Jansen, K
    PHYSICS LETTERS B, 1997, 402 (3-4) : 328 - 334
  • [6] AN EXACT LOCAL HYBRID MONTE-CARLO ALGORITHM FOR GAUGE-THEORIES
    KENNEDY, AD
    BITAR, KM
    NUCLEAR PHYSICS B, 1994, : 786 - 788
  • [7] Local chiral effective field theory interactions and quantum Monte Carlo applications
    Gezerlis, A.
    Tews, I.
    Epelbaum, E.
    Freunek, M.
    Gandolfi, S.
    Hebeler, K.
    Nogga, A.
    Schwenk, A.
    PHYSICAL REVIEW C, 2014, 90 (05):
  • [8] Tunneling hybrid Monte-Carlo algorithm
    Golterman, Maarten
    Shamir, Yigal
    PHYSICAL REVIEW D, 2007, 76 (09):
  • [9] Optimal tuning of the hybrid Monte Carlo algorithm
    Beskos, Alexandros
    Pillai, Natesh
    Roberts, Gareth
    Sanz-Serna, Jesus-Maria
    Stuart, Andrew
    BERNOULLI, 2013, 19 (5A) : 1501 - 1534
  • [10] Tuning the generalized hybrid Monte Carlo algorithm
    Kennedy, AD
    Edwards, R
    Mino, H
    Pendleton, B
    NUCLEAR PHYSICS B, 1996, : 781 - 784