The Local hybrid Monte Carlo algorithm for free field theory: Reexamining overrelaxation

被引:0
|
作者
Horvath, I [1 ]
Kennedy, AD [1 ]
机构
[1] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
关键词
Monte Carlo methods; lattice field theory; overrelaxation algorithms; dynamical critical exponents; Markov processes; critical slowing down;
D O I
10.1016/S0550-3213(97)00695-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the autocorrelations for the Local Hybrid Monte Carlo algorithm [A.D. Kennedy, Nucl. Phys. B (Proc. Suppl.) 30 (1993) 96] in the context of free field theory. In this case this is just Adler's overrelaxation algorithm [S.L. Adler, Phys. Rev. D 23 (1981) 2901]. We consider the algorithm with even/odd, lexicographic, and random updates, and show that its efficiency depends crucially on this ordering of sites when optimized for a given class of operators. In particular, we show that, contrary to previous expectations, it is possible to eliminate critical slowing down (z(int) = 0) for a class of interesting observables, including the magnetic susceptibility: this can be done with lexicographic updates but is not possible with even/odd(z(int) = 1) or random (z(int) = 2) updates. We are considering the dynamical critical exponent tint for integrated autocorrelations rather than for the exponential autocorrelation time; this is reasonable because it is the integrated autocorrelation which determines the cost of. Monte Carlo computation. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:367 / 400
页数:34
相关论文
共 50 条
  • [31] A constrained hybrid Monte-Carlo algorithm and the problem of calculating the free energy in several variables
    Hartmann, C
    Schütte, C
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (10): : 700 - 710
  • [32] A Hybrid Algorithm for Accurate and Efficient Monte Carlo Simulations of Free-Radical Polymerization Reactions
    Tripathi, Amit K.
    Sundberg, Donald C.
    MACROMOLECULAR THEORY AND SIMULATIONS, 2015, 24 (01) : 52 - 64
  • [33] Reexamining equations of state of oblate hard ellipsoids of revolution: Numerical simulation utilizing a cluster Monte Carlo algorithm and comparison to virial theory
    Marienhagen, Philipp
    Wagner, Joachim
    PHYSICAL REVIEW E, 2022, 105 (01)
  • [34] Monte Carlo Hamiltonian:: Generalization to quantum field theory
    Luo, XQ
    Jirari, H
    Kröger, H
    Moriarty, KJM
    NON-PERTUBATIVE METHODS AND LATTICE QCD, 2001, : 100 - 111
  • [35] MONTE-CARLO MEAN-FIELD THEORY
    BANAVAR, JR
    CIEPLAK, M
    MARITAN, A
    PHYSICAL REVIEW LETTERS, 1991, 67 (13) : 1807 - 1807
  • [36] A novel Monte Carlo approach to hybrid local volatility models
    van der Stoep, Anthonie W.
    Grzelak, Lech A.
    Oosterlee, Cornelis W.
    QUANTITATIVE FINANCE, 2017, 17 (09) : 1347 - 1366
  • [37] A sparse algorithm for the evaluation of the local energy in quantum Monte Carlo
    Aspuru-Guzik, A
    Salomón-Ferrer, R
    Austin, B
    Lester, WA
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (07) : 708 - 715
  • [38] THE SCHWINGER MODEL VIA A LOCAL MONTE-CARLO ALGORITHM
    MARTIN, O
    OTTO, S
    NUCLEAR PHYSICS B, 1982, 203 (02) : 297 - 310
  • [39] DYNAMIC CRITICAL PROPERTIES OF THE HYBRID MONTE-CARLO ALGORITHM
    GUPTA, S
    NUCLEAR PHYSICS B, 1992, 370 (03) : 741 - 761
  • [40] CRITICAL-DYNAMICS OF THE HYBRID MONTE-CARLO ALGORITHM
    MEHLIG, B
    FERREIRA, ALC
    HEERMANN, DW
    PHYSICS LETTERS B, 1992, 291 (1-2) : 151 - 154