The Local hybrid Monte Carlo algorithm for free field theory: Reexamining overrelaxation

被引:0
|
作者
Horvath, I [1 ]
Kennedy, AD [1 ]
机构
[1] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
关键词
Monte Carlo methods; lattice field theory; overrelaxation algorithms; dynamical critical exponents; Markov processes; critical slowing down;
D O I
10.1016/S0550-3213(97)00695-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the autocorrelations for the Local Hybrid Monte Carlo algorithm [A.D. Kennedy, Nucl. Phys. B (Proc. Suppl.) 30 (1993) 96] in the context of free field theory. In this case this is just Adler's overrelaxation algorithm [S.L. Adler, Phys. Rev. D 23 (1981) 2901]. We consider the algorithm with even/odd, lexicographic, and random updates, and show that its efficiency depends crucially on this ordering of sites when optimized for a given class of operators. In particular, we show that, contrary to previous expectations, it is possible to eliminate critical slowing down (z(int) = 0) for a class of interesting observables, including the magnetic susceptibility: this can be done with lexicographic updates but is not possible with even/odd(z(int) = 1) or random (z(int) = 2) updates. We are considering the dynamical critical exponent tint for integrated autocorrelations rather than for the exponential autocorrelation time; this is reasonable because it is the integrated autocorrelation which determines the cost of. Monte Carlo computation. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:367 / 400
页数:34
相关论文
共 50 条
  • [41] Testing a Fourier-accelerated hybrid Monte Carlo algorithm
    Catterall, S
    Karamov, S
    PHYSICS LETTERS B, 2002, 528 (3-4) : 301 - 305
  • [42] Statistical analysis method for the worldvolume hybrid Monte Carlo algorithm
    Fukuma, Masafumi
    Matsumoto, Nobuyuki
    Namekawa, Yusuke
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (12):
  • [43] A Novel Hybrid Monte Carlo Algorithm for Sampling Path Space
    Pinski, Francis J.
    ENTROPY, 2021, 23 (05)
  • [44] Implementation of C* boundary conditions in the hybrid Monte Carlo algorithm
    Carmona, JM
    D'Elia, M
    Di Giacomo, A
    Lucini, B
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2000, 11 (04): : 637 - 653
  • [45] Hybrid Monte Carlo algorithm with fat link fermion actions
    Kamleh, W
    Leinweber, DB
    Williams, AG
    PHYSICAL REVIEW D, 2004, 70 (01): : 9
  • [46] Hybrid Monte Carlo implementation of the Fourier path integral algorithm
    Chakravarty, C
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (02):
  • [47] AN IMPROVED ACCEPTANCE PROCEDURE FOR THE HYBRID MONTE-CARLO ALGORITHM
    NEAL, RM
    JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 111 (01) : 194 - 203
  • [48] A sparse parallel hybrid Monte Carlo algorithm for matrix computations
    Branford, S
    Weihrauch, C
    Alexandrov, V
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 3, 2005, 3516 : 743 - 751
  • [49] Speeding up the hybrid Monte Carlo algorithm for dynamical fermions
    Hasenbusch, M
    PHYSICS LETTERS B, 2001, 519 (1-2) : 177 - 182
  • [50] Characterization of a hybrid Monte Carlo search algorithm for structure determination
    Markvardsen, AJ
    Shankland, K
    David, WIF
    Didlick, G
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2005, 38 : 107 - 111