The Local hybrid Monte Carlo algorithm for free field theory: Reexamining overrelaxation

被引:0
|
作者
Horvath, I [1 ]
Kennedy, AD [1 ]
机构
[1] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
关键词
Monte Carlo methods; lattice field theory; overrelaxation algorithms; dynamical critical exponents; Markov processes; critical slowing down;
D O I
10.1016/S0550-3213(97)00695-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We analyze the autocorrelations for the Local Hybrid Monte Carlo algorithm [A.D. Kennedy, Nucl. Phys. B (Proc. Suppl.) 30 (1993) 96] in the context of free field theory. In this case this is just Adler's overrelaxation algorithm [S.L. Adler, Phys. Rev. D 23 (1981) 2901]. We consider the algorithm with even/odd, lexicographic, and random updates, and show that its efficiency depends crucially on this ordering of sites when optimized for a given class of operators. In particular, we show that, contrary to previous expectations, it is possible to eliminate critical slowing down (z(int) = 0) for a class of interesting observables, including the magnetic susceptibility: this can be done with lexicographic updates but is not possible with even/odd(z(int) = 1) or random (z(int) = 2) updates. We are considering the dynamical critical exponent tint for integrated autocorrelations rather than for the exponential autocorrelation time; this is reasonable because it is the integrated autocorrelation which determines the cost of. Monte Carlo computation. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:367 / 400
页数:34
相关论文
共 50 条
  • [21] Monte Carlo methods for quantum field theory
    Kennedy, AD
    CHINESE JOURNAL OF PHYSICS, 2000, 38 (03) : 707 - 720
  • [22] A Hybrid Monte Carlo Local Branching Algorithm for the Single Vehicle Routing Problem with Stochastic Demands
    Rei, Walter
    Gendreau, Michel
    Soriano, Patrick
    TRANSPORTATION SCIENCE, 2010, 44 (01) : 136 - 146
  • [23] Application of Hybrid Monte Carlo Algorithm in Heat Transfer
    Kumar, S. Reetik
    Reddy, B. Konda
    Balaji, C.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2017, 139 (08):
  • [24] Testing trivializing maps in the Hybrid Monte Carlo algorithm
    Engel, Georg P.
    Schaefer, Stefan
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (10) : 2107 - 2114
  • [25] A hybrid parareal Monte Carlo algorithm for parabolic problems
    Dabaghi, Jad
    Maday, Yvon
    Zoia, Andrea
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [26] HAMILTONIAN EVOLUTION FOR THE HYBRID MONTE-CARLO ALGORITHM
    SEXTON, JC
    WEINGARTEN, DH
    NUCLEAR PHYSICS B, 1992, 380 (03) : 665 - 677
  • [27] Hybrid Monte Carlo algorithm for the double exchange model
    Alonso, JL
    Fernández, LA
    Guinea, F
    Laliena, V
    Martín-Mayor, V
    NUCLEAR PHYSICS B, 2001, 596 (03) : 587 - 610
  • [28] Adaptive step size for the hybrid Monte Carlo algorithm
    deForcrand, P
    Takaishi, T
    PHYSICAL REVIEW E, 1997, 55 (03) : 3658 - 3663
  • [29] Faster fermions in the tempered hybrid Monte Carlo algorithm
    Boyd, G
    MULTISCALE PHENOMENA AND THEIR SIMULATION, 1997, : 227 - 231
  • [30] Implementing the Generalised Hybrid Monte-Carlo algorithm
    Sroczynski, Z
    Pickles, SM
    Booth, SP
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 949 - 951