Cost of the generalised hybrid Monte Carlo algorithm for free field theory

被引:43
|
作者
Kennedy, AD [1 ]
Pendleton, B [1 ]
机构
[1] Univ Edinburgh, Dept Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland
关键词
hybrid Monte Carlo (HMC); GHMC; molecular dynamics; field theory; lattice field theory;
D O I
10.1016/S0550-3213(01)00129-8
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study analytically the computational cost of the generalised hybrid Monte Carlo (GHMC) algorithm for free field theory. We calculate the Metropolis acceptance probability for leapfrog and higher-order discretisations of the molecular dynamics (MD) equations of motion. We show how to calculate autocorrelation functions of arbitrary polynomial operators, and use these to optimise the GHMC momentum mixing angle. the trajectory length, and the integration stepsize for the special cases of linear and quadratic operators. We show that long trajectories are optimal for GHMC, and that standard HMC is more efficient than algorithms based on second order Langevin Monte Carlo (L2MC), sometimes known as Kramers equation. We show that contrary to naive expectations HMC and L2MC have the same volume dependence, but their dynamical critical exponents are z = 1 and z = 3/2, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:456 / 510
页数:55
相关论文
共 50 条
  • [1] The Local hybrid Monte Carlo algorithm for free field theory: Reexamining overrelaxation
    Horvath, I
    Kennedy, AD
    NUCLEAR PHYSICS B, 1998, 510 (1-2) : 367 - 400
  • [2] The Local Hybrid Monte Carlo algorithm for free field theory: Reexamining overrelaxation
    Horvath, I.
    Kennedy, A. D.
    Nuclear Physics, Section B, 510 (01):
  • [3] Implementing the Generalised Hybrid Monte-Carlo algorithm
    Sroczynski, Z
    Pickles, SM
    Booth, SP
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 949 - 951
  • [4] Cost of Generalised HMC algorithms for free field theory
    Kennedy, AD
    Pendleton, B
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2000, 83-4 : 816 - 818
  • [5] Mean field theory of the swap Monte Carlo algorithm
    Ikeda, Harukuni
    Zamponi, Francesco
    Ikeda, Atsushi
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (23):
  • [6] Accelerating the hybrid Monte Carlo algorithm
    Khan, AA
    Bakeyev, T
    Göckeler, M
    Horsley, R
    Pleiter, D
    Rakow, P
    Schäfer, A
    Schierholz, G
    Stüben, H
    PHYSICS LETTERS B, 2003, 564 (3-4) : 235 - 240
  • [7] A polynomial hybrid Monte Carlo algorithm
    Frezzotti, R
    Jansen, K
    PHYSICS LETTERS B, 1997, 402 (3-4) : 328 - 334
  • [8] Tunneling hybrid Monte-Carlo algorithm
    Golterman, Maarten
    Shamir, Yigal
    PHYSICAL REVIEW D, 2007, 76 (09):
  • [9] Optimal tuning of the hybrid Monte Carlo algorithm
    Beskos, Alexandros
    Pillai, Natesh
    Roberts, Gareth
    Sanz-Serna, Jesus-Maria
    Stuart, Andrew
    BERNOULLI, 2013, 19 (5A) : 1501 - 1534
  • [10] Tuning the generalized hybrid Monte Carlo algorithm
    Kennedy, AD
    Edwards, R
    Mino, H
    Pendleton, B
    NUCLEAR PHYSICS B, 1996, : 781 - 784