Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2

被引:27
|
作者
Cairo, Laurent
Llibre, Jaurne [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Orleans, MAPMO CNRS, Dept Math, F-45067 Orleans 2, France
关键词
quadratic vector fields; integrability; rational first integral; phase portraits;
D O I
10.1016/j.na.2006.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 2. In other words we characterize all the global phase portraits of the quadratic polynomial vector fields having all their orbits contained in conics. For such a vector field there are exactly 25 different global phase portraits in the Poincare disc, up to a reversal of sense. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:327 / 348
页数:22
相关论文
共 50 条
  • [31] CENTERS FOR POLYNOMIAL VECTOR FIELDS OF ARBITRARY DEGREE
    Llibre, Jaume
    Valls, Claudia
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) : 725 - 742
  • [32] On the topological degree of real polynomial vector fields
    Szafraniec, Z
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 221 - 231
  • [33] QUADRATIC SYSTEMS WITH A RATIONAL FIRST INTEGRAL OF DEGREE 2: A COMPLETE CLASSIFICATION IN THE COEFFICIENT SPACE R12
    Artes, Joan C.
    Llibre, Jaume
    Vulpe, Nicolae
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2007, 56 (03) : 417 - 444
  • [34] Characteristic integral curves of polynomial vector fields
    Brunella, M
    TOPOLOGY, 1998, 37 (06) : 1229 - 1246
  • [35] RATIONAL FIRST INTEGRALS FOR POLYNOMIAL VECTOR FIELDS ON ALGEBRAIC HYPERSURFACES OF Rn+1
    Llibre, Jaume
    Bolanos, Yudy
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (11):
  • [36] Periodic perturbations of quadratic planar polynomial vector fields
    Messias, M
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2002, 74 (02): : 193 - 198
  • [37] Quadratic systems with a rational first integral of degree three: A complete classification in the coefficient space ℝ 12
    Artés J.C.
    Llibre J.
    Vulpe N.
    Rendiconti del Circolo Matematico di Palermo, 2010, 59 (3) : 419 - 449
  • [38] PHASE PORTRAITS FOR QUADRATIC SYSTEMS HAVING A FOCUS AND ONE ANTISADDLE
    ARTES, JC
    LLIBRE, J
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (03) : 875 - 889
  • [39] PHASE PORTRAITS OF THE QUADRATIC SYSTEMS WITH A POLYNOMIAL INVERSE INTEGRATING FACTOR
    Coll, Bartomeu
    Ferragut, Antoni
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (03): : 765 - 783
  • [40] Phase Portraits of the Family IV of the Quadratic Polynomial Differential Systems
    Artes, Joan Carles
    Cairo, Laurent
    Llibre, Jaume
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)