Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2

被引:27
|
作者
Cairo, Laurent
Llibre, Jaurne [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Orleans, MAPMO CNRS, Dept Math, F-45067 Orleans 2, France
关键词
quadratic vector fields; integrability; rational first integral; phase portraits;
D O I
10.1016/j.na.2006.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 2. In other words we characterize all the global phase portraits of the quadratic polynomial vector fields having all their orbits contained in conics. For such a vector field there are exactly 25 different global phase portraits in the Poincare disc, up to a reversal of sense. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:327 / 348
页数:22
相关论文
共 50 条
  • [21] Bifurcation Diagram and Global Phase Portraits of a Family of Quadratic Vector Fields in Class I
    Jia, Man
    Chen, Haibo
    Chen, Hebai
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2020, 19 (02)
  • [22] Phase portraits of the quadratic polynomial Lienard differential systems
    Gouveia, Marcio R. A.
    Llibre, Jaume
    Roberto, Luci Any
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (01) : 202 - 216
  • [23] Invariant algebraic curves and rational first integrals for planar polynomial vector fields
    Chavarriga, J
    Llibre, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 169 (01) : 1 - 16
  • [24] Bifurcation Diagram and Global Phase Portraits of a Family of Quadratic Vector Fields in Class I
    Man Jia
    Haibo Chen
    Hebai Chen
    Qualitative Theory of Dynamical Systems, 2020, 19
  • [25] PHASE PORTRAITS OF BERNOULLI QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Pereira, Weber F.
    Pessoa, Claudio
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, : 1 - 19
  • [26] Normal forms and global phase portraits of quadratic and cubic integrable vector fields having two nonconcentric circles as invariant algebraic curves
    Llibre, Jaume
    Messias, Marcelo
    Reinol, Alisson C.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (03): : 374 - 390
  • [27] A class of reversible quadratic polynomial vector fields on S2
    Pereira, Weber F.
    Pessoa, Claudio
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 203 - 209
  • [28] GLOBAL PHASE PORTRAITS OF KUKLES DIFFERENTIAL SYSTEMS WITH HOMOGENOUS POLYNOMIAL NONLINEARITIES OF DEGREE 5 HAVING A CENTER
    Llibre, Jaume
    Da Silva, Mauricio Fronza
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2016, 48 (01) : 257 - 282
  • [29] Twin Polynomial Vector Fields of Arbitrary Degree
    Jaume Llibre
    Claudia Valls
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 295 - 306
  • [30] Twin Polynomial Vector Fields of Arbitrary Degree
    Llibre, Jaume
    Valls, Claudia
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (01): : 295 - 306