Twin Polynomial Vector Fields of Arbitrary Degree

被引:0
|
作者
Jaume Llibre
Claudia Valls
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Instituto Superior Técnico,Departamento de Matemática
[3] Universidade de Lisboa,undefined
关键词
Euler–Jacobi formula; Singular points; Topological index; Polynomial differential systems; Berlinskii’s Theorem; Primary 34A05; Secondary 34C05; 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study polynomial vector fields on C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{2}$$\end{document} of degree larger than 2 with n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}$$\end{document} isolated singularities. More precisely, we show that if two polynomial vector fields share n2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-1$$\end{document} singularities with the same spectra (trace and determinant) and from these singularities n2-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-2$$\end{document} have the same positions, then both vector fields have identical position and spectra at all the singularities. Moreover we also show that if two polynomial vector fields share n2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-1$$\end{document} singularities with the same positions and from these singularities n2-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-2$$\end{document} have the same spectra, then both vector fields have identical position and spectra at all the singularities. Moreover we also prove that generic vector fields of degree n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document} have no twins and that for any n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document} there exist two uniparametric families of twin vector fields, i.e. two different families of vector fields having exactly the same singular points and for each singular point both vector fields have the same spectrum.
引用
收藏
页码:295 / 306
页数:11
相关论文
共 50 条