Twin Polynomial Vector Fields of Arbitrary Degree

被引:0
|
作者
Jaume Llibre
Claudia Valls
机构
[1] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[2] Instituto Superior Técnico,Departamento de Matemática
[3] Universidade de Lisboa,undefined
关键词
Euler–Jacobi formula; Singular points; Topological index; Polynomial differential systems; Berlinskii’s Theorem; Primary 34A05; Secondary 34C05; 37C10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study polynomial vector fields on C2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{2}$$\end{document} of degree larger than 2 with n2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}$$\end{document} isolated singularities. More precisely, we show that if two polynomial vector fields share n2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-1$$\end{document} singularities with the same spectra (trace and determinant) and from these singularities n2-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-2$$\end{document} have the same positions, then both vector fields have identical position and spectra at all the singularities. Moreover we also show that if two polynomial vector fields share n2-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-1$$\end{document} singularities with the same positions and from these singularities n2-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{2}-2$$\end{document} have the same spectra, then both vector fields have identical position and spectra at all the singularities. Moreover we also prove that generic vector fields of degree n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document} have no twins and that for any n>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>2$$\end{document} there exist two uniparametric families of twin vector fields, i.e. two different families of vector fields having exactly the same singular points and for each singular point both vector fields have the same spectrum.
引用
收藏
页码:295 / 306
页数:11
相关论文
共 50 条
  • [21] Polynomial Smooth Twin Support Vector Machines
    Ding, Shifei
    Huang, Huajuan
    Xu, Xinzheng
    Wang, Jian
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (04): : 2063 - 2071
  • [22] Analysis on limit cycles of Zq-equivariant polynomial vector fields with degree 3 or 4
    Yu, P.
    Han, A.
    Yuan, Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (01) : 51 - 65
  • [23] Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 3
    Llibre, Jaume
    Oliveira, Regilene D. S.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (10) : 3549 - 3560
  • [24] Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2
    Cairo, Laurent
    Llibre, Jaurne
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (02) : 327 - 348
  • [25] STABLE PIECEWISE POLYNOMIAL VECTOR FIELDS
    Pessoa, Claudio
    Sotomayor, Jorge
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [26] Isochronicity and commutation of polynomial vector fields
    E. P. Volokitin
    V. V. Ivanov
    Siberian Mathematical Journal, 1999, 40 : 23 - 38
  • [27] An exponential formula for polynomial vector or fields
    Winkel, R
    ADVANCES IN MATHEMATICS, 1997, 128 (01) : 190 - 216
  • [28] POLYNOMIAL POLY-VECTOR FIELDS
    Klinker, Frank
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2009, 2 (01): : 55 - 73
  • [29] Equivariant decomposition of polynomial vector fields
    Mokhtari, Fahimeh
    Sanders, Jan A.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (08)
  • [30] Obstruction to linearization of polynomial vector fields
    Cresson, J
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2002, 45 (03): : 355 - 363