Phase portraits of quadratic polynomial vector fields having a rational first integral of degree 2

被引:27
|
作者
Cairo, Laurent
Llibre, Jaurne [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Orleans, MAPMO CNRS, Dept Math, F-45067 Orleans 2, France
关键词
quadratic vector fields; integrability; rational first integral; phase portraits;
D O I
10.1016/j.na.2006.04.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify all the global phase portraits of the quadratic polynomial vector fields having a rational first integral of degree 2. In other words we characterize all the global phase portraits of the quadratic polynomial vector fields having all their orbits contained in conics. For such a vector field there are exactly 25 different global phase portraits in the Poincare disc, up to a reversal of sense. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:327 / 348
页数:22
相关论文
共 50 条
  • [41] Phase portraits of (2;0) reversible vector fields with symmetrical singularities
    Buzzi, Claudio
    Llibre, Jaume
    Santana, Paulo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 503 (02)
  • [42] FOLIATIONS IN ALGEBRAIC SURFACES HAVING A RATIONAL FIRST INTEGRAL
    Garcia Zamora, Alexis
    PUBLICACIONS MATEMATIQUES, 1997, 41 (02) : 357 - 373
  • [43] EFFICIENT ALGORITHMS FOR COMPUTING RATIONAL FIRST INTEGRALS AND DARBOUX POLYNOMIALS OF PLANAR POLYNOMIAL VECTOR FIELDS
    Bostan, Alin
    Cheze, Guillaume
    Cluzeau, Thomas
    Weil, Jacques-Arthur
    MATHEMATICS OF COMPUTATION, 2016, 85 (299) : 1393 - 1425
  • [44] Complex Polynomial Vector Fields Having a Finitely Curved Orbit
    B. Scárdua
    Acta Mathematica Sinica, English Series, 2007, 23 : 2247 - 2252
  • [45] Complex Polynomial Vector Fields Having a Finitely Curved Orbit
    B.SCDUA
    ActaMathematicaSinica(EnglishSeries), 2007, 23 (12) : 2247 - 2252
  • [46] Complex polynomial vector fields having a finitely curved orbit
    Scardua, B.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (12) : 2247 - 2252
  • [47] Phase Portraits of Random Planar Homogeneous Vector Fields
    Anna Cima
    Armengol Gasull
    Víctor Mañosa
    Qualitative Theory of Dynamical Systems, 2021, 20
  • [48] Phase Portraits of Random Planar Homogeneous Vector Fields
    Cima, Anna
    Gasull, Armengol
    Manosa, Victor
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (01)
  • [49] Polynomial differential systems having a given Darbouxian first integral
    Llibre, J
    Pantazi, C
    BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (09): : 775 - 788
  • [50] WEAK TOTAL RIGIDITY FOR POLYNOMIAL VECTOR FIELDS OF ARBITRARY DEGREE
    Ilyashenko, Yu.
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (02) : 259 - 263