RATIONAL FIRST INTEGRALS FOR POLYNOMIAL VECTOR FIELDS ON ALGEBRAIC HYPERSURFACES OF Rn+1

被引:6
|
作者
Llibre, Jaume [1 ]
Bolanos, Yudy [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
来源
关键词
Darboux theory of integrability; rational first integrals; polynomial vector fields; algebraic hypersurfaces; EQUATIONS;
D O I
10.1142/S0218127412502707
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using sophisticated techniques of Algebraic Geometry, Jouanolou in 1979 showed that if the number of invariant algebraic hypersurfaces of a polynomial vector field in R-n of degree m is at least (n+m-1/n) + n, then the vector field has a rational first integral. Llibre and Zhang used only Linear Algebra to provide a shorter and easier proof of the result given by Jouanolou. We use ideas of Llibre and Zhang to extend the Jouanolou result to polynomial vector fields defined on algebraic regular hypersurfaces of Rn+1, this extended result completes the standard results of the Darboux theory of integrability for polynomial vector fields on regular algebraic hypersurfaces of Rn+1.
引用
收藏
页数:11
相关论文
共 50 条