The Kahler-Ricci flow on Fano bundles

被引:5
|
作者
Fu, Xin [1 ]
Zhang, Shijin [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
CONTRACTING EXCEPTIONAL DIVISORS; FINITE-TIME SINGULARITY; LOG GENERAL TYPE; EINSTEIN MANIFOLDS; SCALAR CURVATURE; MINIMAL MODELS; VARIETIES; EXISTENCE; SURFACES; CONVERGENCE;
D O I
10.1007/s00209-017-1881-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of the kahler-Ricci flow on some Fano bundles which is a trivial bundle on one Zariski open set. We show that if the fiber is P-m blown up at one point or some weighted projective space blown up at the orbifold point and the initial metric is in a suitable Kahler class, then the fibers collapse in finite time and the metrics converge sub-sequentially in Gromov-Hausdorff sense to a metric on the base.
引用
收藏
页码:1605 / 1626
页数:22
相关论文
共 50 条
  • [11] GENERALIZED KAHLER-RICCI FLOW ON TORIC FANO VARIETIES
    Apostolov, Vestislav
    Streets, Jeffrey
    Ustinovskiy, Yury
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 1 - 41
  • [12] Convergence of the Kahler-Ricci Flow on a Kahler-Einstein Fano Manifold
    Guedj, Vincent
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 299 - 333
  • [13] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [14] PERELMAN'S ENTROPY AND KAHLER-RICCI FLOW ON A FANO MANIFOLD
    Tian, Gang
    Zhang, Shijin
    Zhang, Zhenlei
    Zhu, Xiaohua
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (12) : 6669 - 6695
  • [15] KAHLER-RICCI FLOW ON PROJECTIVE BUNDLES OVER KAHLER-EINSTEIN MANIFOLDS
    Fong, Frederick Tsz-Ho
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (02) : 563 - 589
  • [16] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [17] Conical Kahler-Ricci flows on Fano manifolds
    Liu, Jiawei
    Zhang, Xi
    ADVANCES IN MATHEMATICS, 2017, 307 : 1324 - 1371
  • [18] Regularity of Kahler-Ricci flows on Fano manifolds
    Tian, Gang
    Zhang, Zhenlei
    ACTA MATHEMATICA, 2016, 216 (01) : 127 - 176
  • [19] The Conical Kahler-Ricci Flow with Weak Initial Data on Fano Manifolds
    Liu, Jiawei
    Zhang, Xi
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (17) : 5343 - 5384
  • [20] Compactness of Kahler-Ricci solitons on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Song, Jian
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (01) : 305 - 316