The Kahler-Ricci flow on Fano bundles

被引:5
|
作者
Fu, Xin [1 ]
Zhang, Shijin [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
基金
高等学校博士学科点专项科研基金;
关键词
CONTRACTING EXCEPTIONAL DIVISORS; FINITE-TIME SINGULARITY; LOG GENERAL TYPE; EINSTEIN MANIFOLDS; SCALAR CURVATURE; MINIMAL MODELS; VARIETIES; EXISTENCE; SURFACES; CONVERGENCE;
D O I
10.1007/s00209-017-1881-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the behavior of the kahler-Ricci flow on some Fano bundles which is a trivial bundle on one Zariski open set. We show that if the fiber is P-m blown up at one point or some weighted projective space blown up at the orbifold point and the initial metric is in a suitable Kahler class, then the fibers collapse in finite time and the metrics converge sub-sequentially in Gromov-Hausdorff sense to a metric on the base.
引用
收藏
页码:1605 / 1626
页数:22
相关论文
共 50 条