Convergence of the Kahler-Ricci Flow on a Kahler-Einstein Fano Manifold

被引:0
|
作者
Guedj, Vincent [1 ,2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ Toulouse 3, Inst Univ France, F-31062 Toulouse 9, France
来源
关键词
METRICS; CURVATURE; ENERGY;
D O I
10.1007/978-3-319-00819-6_6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of these notes is to sketch the proof of the following result, due to Perelman and Tian-Zhu: on a Kahler-Einstein Fano manifold with discrete automorphism group, the normalized Kahler-Ricci flow converges smoothly to the unique Kahler-Einstein metric. We also explain an alternative approach due to Berman-Boucksom-Eyssidieux-Guedj-Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
引用
收藏
页码:299 / 333
页数:35
相关论文
共 50 条
  • [1] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [2] On the Kahler-Ricci flow near a Kahler-Einstein metric
    Sun, Song
    Wang, Yuanqi
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 699 : 143 - 158
  • [3] Stability of Kahler-Ricci flow on a Fano manifold
    Zhu, Xiaohua
    MATHEMATISCHE ANNALEN, 2013, 356 (04) : 1425 - 1454
  • [4] Kahler-Ricci flow, Kahler-Einstein metric, and K-stability
    Chen, Xiuxiong
    Sun, Song
    Wang, Bing
    GEOMETRY & TOPOLOGY, 2018, 22 (06) : 3145 - 3173
  • [5] KAHLER-RICCI FLOW ON PROJECTIVE BUNDLES OVER KAHLER-EINSTEIN MANIFOLDS
    Fong, Frederick Tsz-Ho
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (02) : 563 - 589
  • [6] Convergence of the Kahler-Ricci flow on Fano manifolds
    Tian, Gang
    Zhu, Xiaohua
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 678 : 223 - 245
  • [7] Uniformly strong convergence of Kahler-Ricci flows on a Fano manifold
    Wang, Feng
    Zhu, Xiaohua
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (11) : 2337 - 2370
  • [8] PERELMAN'S ENTROPY AND KAHLER-RICCI FLOW ON A FANO MANIFOLD
    Tian, Gang
    Zhang, Shijin
    Zhang, Zhenlei
    Zhu, Xiaohua
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (12) : 6669 - 6695
  • [9] Convergence of a Kahler-Ricci flow
    Sesum, N
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [10] On the Kahler-Ricci flow on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (02) : 573 - 581