Convergence of the Kahler-Ricci Flow on a Kahler-Einstein Fano Manifold

被引:0
|
作者
Guedj, Vincent [1 ,2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ Toulouse 3, Inst Univ France, F-31062 Toulouse 9, France
来源
关键词
METRICS; CURVATURE; ENERGY;
D O I
10.1007/978-3-319-00819-6_6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of these notes is to sketch the proof of the following result, due to Perelman and Tian-Zhu: on a Kahler-Einstein Fano manifold with discrete automorphism group, the normalized Kahler-Ricci flow converges smoothly to the unique Kahler-Einstein metric. We also explain an alternative approach due to Berman-Boucksom-Eyssidieux-Guedj-Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
引用
收藏
页码:299 / 333
页数:35
相关论文
共 50 条
  • [21] On the convergence of a modified Kahler-Ricci flow
    Yuan, Yuan
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 281 - 289
  • [22] KAHLER A-HYPERSURFACES IN A KAHLER-EINSTEIN MANIFOLD
    ROSCA, R
    VANHECKE, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1974, 278 (21): : 1363 - 1366
  • [23] GENERALIZED KAHLER-RICCI FLOW ON TORIC FANO VARIETIES
    Apostolov, Vestislav
    Streets, Jeffrey
    Ustinovskiy, Yury
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 375 (06) : 1 - 41
  • [24] On the convergence of the modified Kahler-Ricci flow and solitons
    Phong, D. H.
    Song, Jian
    Sturm, Jacob
    Weinkove, Ben
    COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (01) : 91 - 112
  • [25] CONVERGENCE OF THE KAHLER-RICCI ITERATION
    Darvas, Tamas
    Rubinstein, Yanir A.
    ANALYSIS & PDE, 2019, 12 (03): : 721 - 735
  • [26] Kahler-Einstein metrics on Fano manifolds
    Tian, Gang
    JAPANESE JOURNAL OF MATHEMATICS, 2015, 10 (01): : 1 - 41
  • [27] METRICS OF KAHLER-EINSTEIN ON THE FANO VARIETIES
    Eyssidieux, Philippe
    ASTERISQUE, 2016, (380) : 207 - 229
  • [28] Kahler-Einstein metrics on Fano surfaces
    Tosatti, Valentino
    EXPOSITIONES MATHEMATICAE, 2012, 30 (01) : 11 - 31
  • [29] SYMMETRIC AND KAHLER-EINSTEIN FANO POLYGONS
    Hwang, Dongseon
    Kim, Yeonsu
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) : 1251 - 1262
  • [30] Convergence of Kahler-Einstein orbifolds
    Sesum, N
    JOURNAL OF GEOMETRIC ANALYSIS, 2004, 14 (01) : 171 - 184