Kahler-Einstein metrics on Fano surfaces

被引:7
|
作者
Tosatti, Valentino [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Kahler-Einstein metrics; Fano surfaces; COMPLEX-SURFACES; MANIFOLDS; CURVATURE;
D O I
10.1016/j.exmath.2011.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an exposition of a result of G. Tian, which says that a Fano surface admits a Kahler-Einstein metric precisely when the Lie algebra of holomorphic vector fields is reductive. (C) 2011 Elsevier GmbH. All rights reserved.
引用
收藏
页码:11 / 31
页数:21
相关论文
共 50 条
  • [1] Kahler-Einstein metrics on Fano manifolds
    Tian, Gang
    JAPANESE JOURNAL OF MATHEMATICS, 2015, 10 (01): : 1 - 41
  • [2] METRICS OF KAHLER-EINSTEIN ON THE FANO VARIETIES
    Eyssidieux, Philippe
    ASTERISQUE, 2016, (380) : 207 - 229
  • [3] Kahler-Einstein metrics with prescribed singularities on Fano manifolds
    Trusiani, Antonio
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2022, 2022 (793): : 1 - 57
  • [4] Kahler-Einstein metrics and the Kahler-Ricci flow on log Fano varieties
    Berman, Robert J.
    Boucksom, Sebastien
    Eyssidieux, Philippe
    Guedj, Vincent
    Zeriahi, Ahmed
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 751 : 27 - 89
  • [5] Kahler-Einstein metrics on symmetric Fano T-varieties
    Suess, Hendrik
    ADVANCES IN MATHEMATICS, 2013, 246 : 100 - 113
  • [6] Indefinite Kahler-Einstein metrics on compact complex surfaces
    Petean, J
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (01) : 227 - 235
  • [7] Bubbling of Kahler-Einstein metrics
    Sun, Song
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2025, 21 (03) : 1317 - 1348
  • [8] G-uniform stability and Kahler-Einstein metrics on Fano varieties
    Li, Chi
    INVENTIONES MATHEMATICAE, 2022, 227 (02) : 661 - 744
  • [9] A SURVEY ON KAHLER-EINSTEIN METRICS
    YAU, ST
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1984, 41 : 285 - 289
  • [10] Twisted Kahler-Einstein metrics
    Ross, Julius
    Szekelyhidi, Gabor
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2021, 17 (03) : 1025 - 1044