Compactness of Kahler-Ricci solitons on Fano manifolds

被引:0
|
作者
Guo, Bin [1 ,2 ]
Phong, Duong H. [1 ]
Song, Jian [3 ]
Sturm, Jacob [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Kahler-Ricci solitons; Fano manifolds; CURVATURE; FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short paper, we improve the result of Phong- moving the assumption on the uniform bound of the Futaki invariant. Let kappa R(n) be the space of Kahler-Ricci solitons on ndimensional Fano manifolds. We show that after passing to a subsequence, any sequence in kappa R(n) converge in the Gromov-Hausdorff topology to a Kahler-Ricci soliton on an n-dimensional Q-Fano variety with log terminal singularities.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 50 条
  • [1] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [2] The moduli space of Fano manifolds with Kahler-Ricci solitons
    Inoue, Eiji
    ADVANCES IN MATHEMATICS, 2019, 357
  • [3] Fano Manifolds with Weak almost Kahler-Ricci Solitons
    Wang, Feng
    Zhu, Xiaohua
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (09) : 2437 - 2464
  • [4] COUPLED KAHLER-RICCI SOLITONS ON TORIC FANO MANIFOLDS
    Hultgren, Jakob
    ANALYSIS & PDE, 2019, 12 (08): : 2067 - 2094
  • [5] On the Kahler-Ricci flow on Fano manifolds
    Guo, Bin
    Phong, Duong H.
    Sturm, Jacob
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (02) : 573 - 581
  • [6] The Kahler-Ricci Flow on Fano Manifolds
    Cao, Huai-Dong
    INTRODUCTION TO THE KAHLER-RICCI FLOW, 2013, 2086 : 239 - 297
  • [7] Kahler-Ricci solitons on toric Fano orbifolds
    Shi, Yalong
    Zhu, Xiaohua
    MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (3-4) : 1241 - 1251
  • [8] Convergence of the Kahler-Ricci flow on Fano manifolds
    Tian, Gang
    Zhu, Xiaohua
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 678 : 223 - 245
  • [9] Kahler-Ricci flow on stable Fano manifolds
    Tosatti, Valentino
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 640 : 67 - 84
  • [10] Conical Kahler-Ricci flows on Fano manifolds
    Liu, Jiawei
    Zhang, Xi
    ADVANCES IN MATHEMATICS, 2017, 307 : 1324 - 1371