Compactness of Kahler-Ricci solitons on Fano manifolds

被引:0
|
作者
Guo, Bin [1 ,2 ]
Phong, Duong H. [1 ]
Song, Jian [3 ]
Sturm, Jacob [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
基金
美国国家科学基金会;
关键词
Kahler-Ricci solitons; Fano manifolds; CURVATURE; FLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short paper, we improve the result of Phong- moving the assumption on the uniform bound of the Futaki invariant. Let kappa R(n) be the space of Kahler-Ricci solitons on ndimensional Fano manifolds. We show that after passing to a subsequence, any sequence in kappa R(n) converge in the Gromov-Hausdorff topology to a Kahler-Ricci soliton on an n-dimensional Q-Fano variety with log terminal singularities.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 50 条