Compactness of Kahler-Ricci solitons on Fano manifolds
被引:0
|
作者:
Guo, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USA
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Guo, Bin
[1
,2
]
Phong, Duong H.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Math, New York, NY 10027 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Phong, Duong H.
[1
]
Song, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Song, Jian
[3
]
Sturm, Jacob
论文数: 0引用数: 0
h-index: 0
机构:
Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USAColumbia Univ, Dept Math, New York, NY 10027 USA
Sturm, Jacob
[2
]
机构:
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
In this short paper, we improve the result of Phong- moving the assumption on the uniform bound of the Futaki invariant. Let kappa R(n) be the space of Kahler-Ricci solitons on ndimensional Fano manifolds. We show that after passing to a subsequence, any sequence in kappa R(n) converge in the Gromov-Hausdorff topology to a Kahler-Ricci soliton on an n-dimensional Q-Fano variety with log terminal singularities.
机构:
Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
Liu, Jiawei
Zhang, Xi
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Key Lab Wu Wen Tsun Math, Hefei 230026, Anhui, Peoples R China
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R ChinaPeking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China