Unsupervised machine learning of topological phase transitions from experimental data

被引:50
|
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Topological data analysis and machine learning
    Leykam, Daniel
    Angelakis, Dimitris G.
    ADVANCES IN PHYSICS-X, 2023, 8 (01):
  • [22] Unsupervised machine learning of phase transition in percolation
    Yu, Wei
    Lyu, Pin
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 559
  • [23] Unsupervised machine learning account of magnetic transitions in the Hubbard model
    Ch'ng, Kelvin
    Vazquez, Nick
    Khatami, Ehsan
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [24] Mapping the Chaotic Transitions of the Lorenz Equations With Unsupervised Machine Learning
    Tribelhorn, Ben
    Dillon, H. E.
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2023, 145 (01):
  • [25] Hierarchical, unsupervised learning with growing via phase transitions
    Miller, D
    Rose, K
    NEURAL COMPUTATION, 1996, 8 (02) : 425 - 450
  • [26] Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders
    Wetzel, Sebastian J.
    PHYSICAL REVIEW E, 2017, 96 (02)
  • [27] Machine learning applications in phase transitions
    Yang YuXiang
    Li Wei
    Shen JianMin
    Wang YanYang
    Tuo Kui
    Xu Dian
    Chen XiangNa
    Ma Fei
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (09)
  • [28] Machine learning of quantum phase transitions
    Dong, Xiao-Yu
    Pollmann, Frank
    Zhang, Xue-Feng
    PHYSICAL REVIEW B, 2019, 99 (12)
  • [29] Unveiling phase transitions with machine learning
    Canabarro, Askery
    Fanchini, Felipe Fernandes
    Malvezzi, Andre Luiz
    Pereira, Rodrigo
    Chaves, Rafael
    PHYSICAL REVIEW B, 2019, 100 (04)
  • [30] Thermosalient Phase Transitions from Machine Learning Interatomic Potential
    Mladineo, Bruno
    Loncaric, Ivor
    CRYSTAL GROWTH & DESIGN, 2024, 24 (20) : 8167 - 8173