Topological data analysis and machine learning

被引:14
|
作者
Leykam, Daniel [1 ,4 ]
Angelakis, Dimitris G. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[2] Tech Univ Crete, Sch Elect & Comp Engn, Iraklion, Greece
[3] AngelQ Quantum Comp, Singapore, Singapore
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
来源
ADVANCES IN PHYSICS-X | 2023年 / 8卷 / 01期
基金
新加坡国家研究基金会;
关键词
Machine learning; strongly correlated quantum systems; persistent homology; phase transition; quantum computing; condensed matter physics; topological phase; PERSISTENT HOMOLOGY; STABILITY; COMPLEXES; ENTROPY;
D O I
10.1080/23746149.2023.2202331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological data analysis refers to approaches for systematically and reliably computing abstract 'shapes' of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise review of applications of topological data analysis to physics and machine learning problems in physics including the unsupervised detection of phase transitions. We finish with a preview of anticipated directions for future research.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Designing machine learning workflows with an application to topological data analysis
    Cawi, Eric
    La Rosa, Patricio S.
    Nehorai, Arye
    PLOS ONE, 2019, 14 (12):
  • [2] Topological data analysis assisted machine learning for polar topological structures in oxide superlattices
    Du, Guanshihan
    Zhou, Linming
    Huang, Yuhui
    Wu, Yongjun
    Hong, Zijian
    ACTA MATERIALIA, 2025, 282
  • [3] Chatter Classification in Turning using Machine Learning and Topological Data Analysis
    Khasawneh, Firas A.
    Munch, Elizabeth
    Perea, Jose A.
    IFAC PAPERSONLINE, 2018, 51 (14): : 195 - 200
  • [4] Using topological data analysis and machine learning to predict customer churn
    Sagming, Marcel
    Heymann, Reolyn
    Visaya, Maria Vivien
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [5] giotto-tda: A Topological Data Analysis Toolkit for Machine Learning and Data Exploration
    Tauzin, Guillaume
    Lupo, Umberto
    Tunstall, Lewis
    Perez, Julian Burella
    Caorsi, Matteo
    Medina-Mardones, Anibal M.
    Dassatti, Alberto
    Hess, Kathryn
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [6] giotto-tda: A topological data analysis toolkit for machine learning and data exploration
    Tauzin, Guillaume
    Lupo, Umberto
    Tunstall, Lewis
    Perez, Julian Burella
    Caorsi, Matteo
    Medina-Mardones, Anibal M.
    Dassatti, Alberto
    Hess, Kathryn
    Journal of Machine Learning Research, 2021, 22
  • [7] Individualized Patient Risk Stratification Using Machine Learning and Topological Data Analysis
    Ng, Arnold C. T.
    Delgado, Victoria
    Bax, Jeroen J.
    JACC-CARDIOVASCULAR IMAGING, 2020, 13 (05) : 1133 - 1134
  • [8] Prediction of cybersickness in virtual environments using topological data analysis and machine learning
    Hadadi, Azadeh
    Guillet, Christophe
    Chardonnet, Jean-Remy
    Langovoy, Mikhail
    Wang, Yuyang
    Ovtcharova, Jivka
    FRONTIERS IN VIRTUAL REALITY, 2022, 3
  • [9] Topological Machine Learning for Mixed Numeric and Categorical Data
    Wu, Chengyuan
    Hargreaves, Carol Anne
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2021, 30 (05)
  • [10] MaTiLDA: An Integrated Machine Learning and Topological Data Analysis Platform for Brain Network Dynamics
    Prantzalos, Katrina
    Upadhyaya, Dipak
    Shafiabadi, Nassim
    Fernandez-BacaVaca, Guadalupe
    Gurski, Nick
    Yoshimoto, Kenneth
    Sivagnanam, Subhashini
    Majumdar, Amitava
    Sahoo, Satya S.
    BIOCOMPUTING 2024, PSB 2024, 2024, : 65 - 80