Topological data analysis and machine learning

被引:14
|
作者
Leykam, Daniel [1 ,4 ]
Angelakis, Dimitris G. [1 ,2 ,3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
[2] Tech Univ Crete, Sch Elect & Comp Engn, Iraklion, Greece
[3] AngelQ Quantum Comp, Singapore, Singapore
[4] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
来源
ADVANCES IN PHYSICS-X | 2023年 / 8卷 / 01期
基金
新加坡国家研究基金会;
关键词
Machine learning; strongly correlated quantum systems; persistent homology; phase transition; quantum computing; condensed matter physics; topological phase; PERSISTENT HOMOLOGY; STABILITY; COMPLEXES; ENTROPY;
D O I
10.1080/23746149.2023.2202331
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological data analysis refers to approaches for systematically and reliably computing abstract 'shapes' of complex data sets. There are various applications of topological data analysis in life and data sciences, with growing interest among physicists. We present a concise review of applications of topological data analysis to physics and machine learning problems in physics including the unsupervised detection of phase transitions. We finish with a preview of anticipated directions for future research.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Machine learning for analysis of atomic spectral data
    Cianciosa, M.
    Law, K. J. H.
    Martin, E. H.
    Green, D. L.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 240
  • [42] Quantum Machine Learning for data analysis at LHCb
    Gianelle, A.
    Lucchesi, D.
    Monaco, S.
    Nicotra, D.
    Sestini, L.
    Zuliani, D.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2024, 47 (03):
  • [43] Data Analysis for Fuzzy Extreme Learning Machine
    Kale, Archana P.
    INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2023, 23 (04) : 465 - 481
  • [44] A Topological Machine Learning Pipeline for Classification
    Conti, Francesco
    Moroni, Davide
    Pascali, Maria Antonietta
    MATHEMATICS, 2022, 10 (17)
  • [45] A Survey of Topological Machine Learning Methods
    Hensel, Felix
    Moor, Michael
    Rieck, Bastian
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [46] Detection of topological materials with machine learning
    Claussen, Nikolas
    Bernevig, B. Andrei
    Regnault, Nicolas
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [47] Data Science: Machine Learning and Multivariate Analysis in Learning Styles
    Maiquez, Diego
    Pabon, Diego
    Condor, Mariela
    Rodriguez, Gonzalo
    Farinango, Mauricio
    Oyasa, Ana
    INNOVATION AND RESEARCH-SMART TECHNOLOGIES & SYSTEMS, VOL 2, CI3 2023, 2024, 1041 : 69 - 81
  • [48] A REVIEW ON THE SIGNIFICANCE OF MACHINE LEARNING FOR DATA ANALYSIS IN BIG DATA
    Kolisetty, Vishnu Vandana
    Rajput, Dharmendra Singh
    JORDANIAN JOURNAL OF COMPUTERS AND INFORMATION TECHNOLOGY, 2020, 6 (01): : 41 - 57
  • [49] A topological model for partial equivariance in deep learning and data analysis
    Ferrari, Lucia
    Frosini, Patrizio
    Quercioli, Nicola
    Tombari, Francesca
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6
  • [50] Learning quantum phase transitions through topological data analysis
    Tirelli, Andrea
    Costa, Natanael C.
    PHYSICAL REVIEW B, 2021, 104 (23)