Unsupervised machine learning of topological phase transitions from experimental data

被引:50
|
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Segmenting accelerometer data from daily life with unsupervised machine learning
    van Kuppevelt, Dafne
    Heywood, Joe
    Hamer, Mark
    Sabia, Severine
    Fitzsimons, Emla
    van Hees, Vincent
    PLOS ONE, 2019, 14 (01):
  • [32] Topological data analysis via unsupervised machine learning for recognizing atmospheric river patterns on flood detection
    Ohanuba, F. O.
    Ismail, M. T.
    Ali, M. K. Majahar
    SCIENTIFIC AFRICAN, 2021, 13
  • [33] Lessons from infant learning for unsupervised machine learning
    Lorijn Zaadnoordijk
    Tarek R. Besold
    Rhodri Cusack
    Nature Machine Intelligence, 2022, 4 : 510 - 520
  • [34] Lessons from infant learning for unsupervised machine learning
    Zaadnoordijk, Lorijn
    Besold, Tarek R.
    Cusack, Rhodri
    NATURE MACHINE INTELLIGENCE, 2022, 4 (06) : 510 - 520
  • [35] An Unsupervised Machine Learning Approach in Remote Sensing Data
    Mazzei, Mauro
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2019, PT III: 19TH INTERNATIONAL CONFERENCE, SAINT PETERSBURG, RUSSIA, JULY 1-4, 2019, PROCEEDINGS, PART III, 2019, 11621 : 435 - 447
  • [36] Representing molecular and materials data for unsupervised machine learning
    Swann, E.
    Sun, B.
    Cleland, D. M.
    Barnard, A. S.
    MOLECULAR SIMULATION, 2018, 44 (11) : 905 - 920
  • [37] Robust CSEM data processing by unsupervised machine learning
    Li, Guang
    He, Zhushi
    Deng, Juzhi
    Tang, Jingtian
    Fu, Youyao
    Liu, Xiaoqiong
    Shen, Changming
    JOURNAL OF APPLIED GEOPHYSICS, 2021, 186
  • [38] Machine learning phase transitions with a quantum processor
    Uvarov, A., V
    Kardashin, A. S.
    Biamonte, J. D.
    PHYSICAL REVIEW A, 2020, 102 (01)
  • [39] Learning from Privacy Preserved Encrypted Data on Cloud Through Supervised and Unsupervised Machine Learning
    Khan, Ahmad Neyaz
    Fan, Ming Yu
    Malik, Asad
    Memon, Raheel Ahmed
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND ENGINEERING TECHNOLOGIES (ICOMET), 2019,
  • [40] Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations
    Jadrich, R. B.
    Lindquist, B. A.
    Truskett, T. M.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (19):