Unsupervised machine learning of topological phase transitions from experimental data

被引:50
|
作者
Kaeming, Niklas [1 ]
Dawid, Anna [2 ,3 ]
Kottmann, Korbinian [3 ]
Lewenstein, Maciej [3 ,4 ]
Sengstock, Klaus [1 ,5 ,6 ]
Dauphin, Alexandre [3 ]
Weitenberg, Christof [1 ,5 ]
机构
[1] Univ Hamburg, ILP Inst Laserphys, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Pg Lluis Campanys 23, Barcelona 08010, Spain
[5] Hamburg Ctr Ultrafast Imaging, Luruper Chaussee 149, D-22761 Hamburg, Germany
[6] Univ Hamburg, ZOQ Zentrum Opt Quantentechnol, Luruper Chaussee 149, D-22761 Hamburg, Germany
来源
基金
欧盟地平线“2020”;
关键词
machine learning; unsupervised learning; topological matter; Floquet systems; QUANTUM; REALIZATION; MODEL;
D O I
10.1088/2632-2153/abffe7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently, machine learning methods have been shown to be an alternative way of localising phase boundaries from noisy and imperfect data without the knowledge of the order parameter. Here, we apply different unsupervised machine learning techniques, including anomaly detection and influence functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase diagram of the Haldane model in a completely unbiased fashion. We show that these methods can successfully be applied to experimental data at finite temperatures and to the data of Floquet systems when post-processing the data to a single micromotion phase. Our work provides a benchmark for the unsupervised detection of new exotic phases in complex many-body systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Unsupervised machine learning for detection of phase transitions in off-lattice systems. II. Applications
    Jadrich, R. B.
    Lindquist, B. A.
    Pineros, W. D.
    Banerjee, D.
    Truskett, T. M.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 149 (19):
  • [42] Topological Methods for Unsupervised Learning
    McInnes, Leland
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 343 - 350
  • [43] Predicting experimental electrophilicities from quantum and topological descriptors: A machine learning approach
    Hoffmann, Guillaume
    Balcilar, Muhammet
    Tognetti, Vincent
    Heroux, Pierre
    Gauzere, Benoit
    Adam, Sebastien
    Joubert, Laurent
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2020, 41 (24) : 2124 - 2136
  • [44] Machine learning-enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors
    Li, Linglong
    Yang, Yaodong
    Zhang, Dawei
    Ye, Zuo-Guang
    Jesse, Stephen
    Kalinin, Sergei V.
    Vasudevan, Rama K.
    SCIENCE ADVANCES, 2018, 4 (03):
  • [45] Identifying Topological Phase Transitions in Experiments Using Manifold Learning
    Lustig, Eran
    Yair, Or
    Talmon, Ronen
    Segev, Mordechai
    PHYSICAL REVIEW LETTERS, 2020, 125 (12)
  • [46] UNSUPERVISED AND SUPERVISED MACHINE LEARNING FOR ESTABLISHING BACK PAIN PHENOTYPES: DATA FROM THE OAI
    Huang, Z.
    Guo, W.
    Martin, J. T.
    OSTEOARTHRITIS AND CARTILAGE, 2021, 29 : S300 - S301
  • [47] Identifying percolation phase transitions with unsupervised learning based on largest clusters
    Xu, Dian
    Wang, Shanshan
    Deng, Weibing
    Gao, Feng
    Li, Wei
    Shen, Jianmin
    PHYSICS LETTERS A, 2025, 531
  • [48] Identifying quantum phase transitions with minimal prior knowledge by unsupervised learning
    Marashli, Mohamad Ali
    Lam, Ho Lai Henry
    Mokayed, Hamam
    Sandin, Fredrik
    Liwicki, Marcus
    Tang, Ho-Kin
    Yu, Wing Chi
    SCIPOST PHYSICS CORE, 2025, 8 (01):
  • [49] Unsupervised learning of phase transitions via modified anomaly detection with autoencoders
    Ng, Kwai-Kong
    Yang, Min-Fong
    PHYSICAL REVIEW B, 2023, 108 (21)
  • [50] Topological Machine Learning for Mixed Numeric and Categorical Data
    Wu, Chengyuan
    Hargreaves, Carol Anne
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2021, 30 (05)