Optomechanical tests of a Schrodinger-Newton equation for gravitational quantum mechanics

被引:21
|
作者
Gan, C. C. [1 ,2 ]
Savage, C. M. [1 ]
Scully, S. Z. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Canberra, ACT 0200, Australia
[2] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
基金
澳大利亚研究理事会;
关键词
GRAVITY; SEARCH;
D O I
10.1103/PhysRevD.93.124049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that optomechanical systems can test the Schrodinger-Newton equation of gravitational quantum mechanics due to Yang et al. Phys. Rev. Lett. 110, 170401 (2013). This equation is motivated by semiclassical gravity, a widely used theory of interacting gravitational and quantum fields. From the many-body Schrodinger-Newton equation follows an approximate equation for the center-of-mass dynamics of macroscopic objects. This predicts a distinctive double-peaked signature in the output optical quadrature power spectral density of certain optomechanical systems. Since the Schrodinger-Newton equation lacks free parameters, these will allow its experimental confirmation or refutation.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Uniqueness of positive solutions with concentration for the Schrodinger-Newton problem
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [42] Bound states of the Schrodinger-Newton model in low dimensions
    Stubbe, Joachim
    Vuffray, Marc
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3171 - 3178
  • [43] A note on Schrodinger-Newton systems with decaying electric potential
    Secchi, Simone
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (9-10) : 3842 - 3856
  • [44] Spherically-symmetric solutions of the Schrodinger-Newton equations
    Moroz, IM
    Penrose, R
    Tod, P
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (09) : 2733 - 2742
  • [45] Existence of Bound States for Schrodinger-Newton Type Systems
    Vaira, Giusi
    ADVANCED NONLINEAR STUDIES, 2013, 13 (02) : 495 - 516
  • [46] STATIONARY SOLUTIONS OF THE SCHRODINGER-NEWTON MODEL - AN ODE APPROACH
    Choquard, Philippe
    Stubbe, Joachim
    Vuffray, Marc
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (7-8) : 665 - 679
  • [47] The dynamics of the Schrodinger-Newton system with self-field coupling
    Franklin, J.
    Guo, Y.
    Newton, K. Cole
    Schlosshauer, M.
    CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (07)
  • [48] The linearity of quantum mechanics and the birth of the Schrodinger equation
    Schleich, W. P.
    Greenberger, D. M.
    Kobe, D. H.
    Scully, M. O.
    FOUNDATIONS OF QUANTUM THEORY, 2019, 197 : 47 - 79
  • [49] Non-Degeneracy of Peak Solutions to the Schrodinger-Newton System
    Guo, Qing
    Xie, Huafei
    ADVANCED NONLINEAR STUDIES, 2021, 21 (02) : 447 - 460
  • [50] MULTIPLE S1-ORBITS FOR THE SCHRODINGER-NEWTON SYSTEM
    Cingolani, Silvia
    Secchi, Simone
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2013, 26 (9-10) : 867 - 884