Optomechanical tests of a Schrodinger-Newton equation for gravitational quantum mechanics

被引:21
|
作者
Gan, C. C. [1 ,2 ]
Savage, C. M. [1 ]
Scully, S. Z. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Canberra, ACT 0200, Australia
[2] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
基金
澳大利亚研究理事会;
关键词
GRAVITY; SEARCH;
D O I
10.1103/PhysRevD.93.124049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that optomechanical systems can test the Schrodinger-Newton equation of gravitational quantum mechanics due to Yang et al. Phys. Rev. Lett. 110, 170401 (2013). This equation is motivated by semiclassical gravity, a widely used theory of interacting gravitational and quantum fields. From the many-body Schrodinger-Newton equation follows an approximate equation for the center-of-mass dynamics of macroscopic objects. This predicts a distinctive double-peaked signature in the output optical quadrature power spectral density of certain optomechanical systems. Since the Schrodinger-Newton equation lacks free parameters, these will allow its experimental confirmation or refutation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Optical analogues of the Schrodinger-Newton equation and rotating boson stars.
    Roger, Thomas
    Maitland, Calum
    Wilson, Kali
    Wright, Ewan M.
    Faccio, Daniele
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [22] UNIQUENESS AND NONDEGENERACY OF GROUND STATES FOR THE SCHRODINGER-NEWTON EQUATION WITH POWER NONLINEARITY
    Luo, Huxiao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (11) : 3443 - 3473
  • [23] Modification of Schrodinger-Newton equation due to braneworld models with minimal length
    Bhat, Anha
    Dey, Sanjib
    Faizal, Mir
    Hou, Chenguang
    Zhao, Qin
    PHYSICS LETTERS B, 2017, 770 : 325 - 330
  • [24] SOLITON DYNAMICS FOR THE SCHRODINGER-NEWTON SYSTEM
    D'Avenia, Pietro
    Squassina, Marco
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (03): : 553 - 572
  • [25] An analytical approach to the Schrodinger-Newton equations
    Tod, P
    Moroz, IM
    NONLINEARITY, 1999, 12 (02) : 201 - 216
  • [26] Fundamental Irreversibility: Planckian or Schrodinger-Newton?
    Diosi, Lajos
    ENTROPY, 2018, 20 (07):
  • [27] A numerical study of the Schrodinger-Newton equations
    Harrison, R
    Moroz, I
    Tod, KP
    NONLINEARITY, 2003, 16 (01) : 101 - 122
  • [28] CONSERVATION LAWS FOR THE SCHRODINGER-NEWTON EQUATIONS
    Gubbiotti, G.
    Nucci, M. C.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (03) : 292 - 299
  • [29] Minimizers of the planar Schrodinger-Newton equations
    Wang, Wenbo
    Zhang, Wei
    Li, Yongkun
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (01) : 151 - 161
  • [30] Correlations and signaling in the Schrodinger-Newton model
    Gruca, Jacek Aleksander
    Kumar, Ankit
    Ganardi, Ray
    Arumugam, Paramasivan
    Kropielnicka, Karolina
    Paterek, Tomasz
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (24)