Optomechanical tests of a Schrodinger-Newton equation for gravitational quantum mechanics

被引:21
|
作者
Gan, C. C. [1 ,2 ]
Savage, C. M. [1 ]
Scully, S. Z. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Quantum Sci, Canberra, ACT 0200, Australia
[2] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia
基金
澳大利亚研究理事会;
关键词
GRAVITY; SEARCH;
D O I
10.1103/PhysRevD.93.124049
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We show that optomechanical systems can test the Schrodinger-Newton equation of gravitational quantum mechanics due to Yang et al. Phys. Rev. Lett. 110, 170401 (2013). This equation is motivated by semiclassical gravity, a widely used theory of interacting gravitational and quantum fields. From the many-body Schrodinger-Newton equation follows an approximate equation for the center-of-mass dynamics of macroscopic objects. This predicts a distinctive double-peaked signature in the output optical quadrature power spectral density of certain optomechanical systems. Since the Schrodinger-Newton equation lacks free parameters, these will allow its experimental confirmation or refutation.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Dark energy effects in the Schrodinger-Newton approach
    Kelvin
    Onggadinata, Kelvin
    Lake, Matthew J.
    Paterek, Tomasz
    PHYSICAL REVIEW D, 2020, 101 (06)
  • [32] On the asymptotic decay of the Schrodinger-Newton ground state
    Kiessling, Michael K-H
    PHYSICS LETTERS A, 2021, 395
  • [33] Another look at planar Schrodinger-Newton systems
    Liu, Zhisu
    Radulescu, Vicentiu D.
    Tang, Chunlei
    Zhang, Jianjun
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 328 : 65 - 104
  • [34] The one-dimensional Schrodinger-Newton equations
    Choquard, Philippe
    Stubbe, Joachim
    LETTERS IN MATHEMATICAL PHYSICS, 2007, 81 (02) : 177 - 184
  • [35] Strongly interacting bumps for the Schrodinger-Newton equations
    Wei, Juncheng
    Winter, Matthias
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [36] Infinitely many solutions for Schrodinger-Newton equations
    Hu, Yeyao
    Jevnikar, Aleks
    Xie, Weihong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (05)
  • [37] INTERTWINING SEMICLASSICAL SOLUTIONS TO A SCHRODINGER-NEWTON SYSTEM
    Cingolani, Silvia
    Clapp, Monica
    Secchi, Simone
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (04): : 891 - 908
  • [38] New concentrated solutions for the nonlinear Schrodinger-Newton system
    Chen, Haixia
    Yang, Pingping
    APPLICABLE ANALYSIS, 2024, 103 (01) : 312 - 339
  • [39] The Schrodinger-Newton system with self-field coupling
    Franklin, J.
    Guo, Y.
    McNutt, A.
    Morgan, A.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (06)
  • [40] Relativistic generalization of the Schrodinger-Newton model for the wavefunction reduction
    Kassandrov, Vladimir V.
    Markova, Nina, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (2-3):